Polygenic scores and their applications in kidney disease

Chatterjee, N. et al. Projecting the performance of risk prediction based on polygenic analyses of genome-wide association studies. Nat. Genet. 45, 400–405 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, Y., Qi, G. H., Park, J. H. & Chatterjee, N. Estimation of complex effect-size distributions using summary-level statistics from genome-wide association studies across 32 complex traits. Nat. Genet. 50, 1318–1326 (2018).

Article  CAS  PubMed  Google Scholar 

Khera, A. V. et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat. Genet. 50, 1219–1224 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Visscher, P. M. et al. 10 years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet. 101, 5–22 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Turner, S. et al. Quality control procedures for genome-wide association studies. Curr. Protoc. Hum. Genet. https://doi.org/10.1002/0471142905.hg0119s68 (2011).

Hong, E. P. & Park, J. W. Sample size and statistical power calculation in genetic association studies. Genomics Inf. 10, 117–122 (2012).

Article  PubMed Central  Google Scholar 

Stanaway, I. B. et al. The eMERGE genotype set of 83,717 subjects imputed to ~40 million variants genome wide and association with the herpes zoster medical record phenotype. Genet. Epidemiol. 43, 63–81 (2019).

PubMed  Google Scholar 

Bycroft, C. et al. The UK biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ramirez, A. H. et al. The All of Us research program: data quality, utility, and diversity. Patterns 3, 100570 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284–1287 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pasaniuc, B. et al. Extremely low-coverage sequencing and imputation increases power for genome-wide association studies. Nat. Genet. 44, 631–635 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Homburger, J. R. et al. Low coverage whole genome sequencing enables accurate assessment of common variants and calculation of genome-wide polygenic scores. Genome Med. 11, 74 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sul, J. H., Martin, L. S. & Eskin, E. Population structure in genetic studies: confounding factors and mixed models. PLoS Genet. 14, e1007309 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Peterson, R. E. et al. Genome-wide association studies in ancestrally diverse populations: opportunities, methods, pitfalls, and recommendations. Cell 179, 589–603 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

Article  CAS  PubMed  Google Scholar 

Raj, A., Stephens, M. & Pritchard, J. K. fastSTRUCTURE: variational inference of population structure in large SNP data sets. Genetics 197, 573–589 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Zhou, W. et al. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. Nat. Genet. 50, 1335–1341 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mbatchou, J. et al. Computationally efficient whole-genome regression for quantitative and binary traits. Nat. Genet. 53, 1097–1103 (2021).

Article  CAS  PubMed  Google Scholar 

Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Slatkin, M. Linkage disequilibrium — understanding the evolutionary past and mapping the medical future. Nat. Rev. Genet. 9, 477–485 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 44, 369–U170 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Servin, B. & Stephens, M. Imputation-based analysis of association studies: candidate regions and quantitative traits. PLoS Genet. 3, e114 (2007).

Article  PubMed  PubMed Central  Google Scholar 

Hormozdiari, F., Kostem, E., Kang, E. Y., Pasaniuc, B. & Eskin, E. Identifying causal variants at loci with multiple signals of association. Genetics 198, 497–508 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Benner, C. et al. FINEMAP: efficient variable selection using summary data from genome-wide association studies. Bioinformatics 32, 1493–1501 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kichaev, G. et al. Integrating functional data to prioritize causal variants in statistical fine-mapping studies. PLoS Genet. 10, e1004722 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Pickrell, J. K. Joint analysis of functional genomic data and genome-wide association studies of 18 human traits. Am. J. Hum. Genet. 94, 559–573 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Farh, K. K. et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 518, 337–343 (2015).

Article  CAS  PubMed  Google Scholar 

Wang, G., Sarkar, A., Carbonetto, P. & Stephens, M. A simple new approach to variable selection in regression, with application to genetic fine mapping. J. R. Stat. Soc. B 82, 1273–1300 (2020).

Article  Google Scholar 

Yang, Z. K. et al. CARMA is a new Bayesian model for fine-mapping in genome-wide association meta-analyses. Nat. Genet. 55, 1057–1065 (2023).

Article  CAS  PubMed  Google Scholar 

Dobrijevic, E. et al. Mendelian randomization for nephrologists. Kidney Int. 104, 1113–1123 (2023).

Article  PubMed 

留言 (0)

沒有登入
gif