Metformin Attenuates Partial Epithelial-Mesenchymal Transition in Salivary Gland Inflammation via PI3K/Akt/GSK3β/Snail Signaling Axis

Guggenheimer, J. and P.A. Moore. 2003. Xerostomia: etiology, recognition and treatment. Journal of the American Dental Association. 134(1): 61–9; quiz 118–9.

Mandel, L. 2014. Salivary gland disorders. Medical Clinics of North America 98 (6): 1407–1449.

Article  PubMed  Google Scholar 

Koch, M., and H. Iro. 2017. Salivary duct stenosis: Diagnosis and treatment. Acta Otorhinolaryngologica Italica 37 (2): 132–141.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wilson, K.F., J.D. Meier, and P.D. Ward. 2014. Salivary gland disorders. American Family Physician 89 (11): 882–888.

PubMed  Google Scholar 

Aure, M.H., S.F. Konieczny, and C.E. Ovitt. 2015. Salivary gland homeostasis is maintained through acinar cell self-duplication. Developmental Cell 33 (2): 231–237.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rocchi, C., L. Barazzuol, and R.P. Coppes. 2021. The evolving definition of salivary gland stem cells. NPJ Regenerative Medicine 6 (1): 4.

Article  PubMed  PubMed Central  Google Scholar 

Emmerson, E., et al. 2018. Salivary glands regenerate after radiation injury through SOX2-mediated secretory cell replacement. EMBO Molecular Medicine. 10(3).

Xu, X., et al. 2022. Sox9(+) cells are required for salivary gland regeneration after radiation damage via the Wnt/β-catenin pathway. Journal of Genetics and Genomics 49 (3): 230–239.

Article  CAS  PubMed  Google Scholar 

Lamouille, S., J. Xu, and R. Derynck. 2014. Molecular mechanisms of epithelial-mesenchymal transition. Nature Reviews Molecular Cell Biology 15 (3): 178–196.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sisto, M., S. Lisi, and D. Ribatti. 2018. The role of the epithelial-to-mesenchymal transition (EMT) in diseases of the salivary glands. Histochemistry and Cell Biology 150 (2): 133–147.

Article  CAS  PubMed  Google Scholar 

Barriere, G., et al. 2015. Epithelial Mesenchymal Transition: A double-edged sword. Clinical and Translational Medicine 4: 14.

Article  PubMed  PubMed Central  Google Scholar 

Sisto, M., et al. 2022. The Expression of Follistatin-like 1 Protein Is Associated with the Activation of the EMT Program in Sjögren's Syndrome. Journal of Clinical Medicine. 11(18).

Sisto, M., et al. 2020. TGFβ1-Smad canonical and -Erk noncanonical pathways participate in interleukin-17-induced epithelial-mesenchymal transition in Sjögren’s syndrome. Laboratory Investigation 100 (6): 824–836.

Article  CAS  PubMed  Google Scholar 

Xu, R., et al. 2019. Roles of the Phosphorylation of Transcriptional Factors in Epithelial-Mesenchymal Transition. J Oncol 2019: 5810465.

Article  PubMed  PubMed Central  Google Scholar 

Nieto, M.A., et al. 2016. EMT: 2016. Cell 166 (1): 21–45.

Article  CAS  PubMed  Google Scholar 

Jin, D., et al. 2020. Metformin-repressed miR-381-YAP-snail axis activity disrupts NSCLC growth and metastasis. Journal of Experimental & Clinical Cancer Research 39 (1): 6.

Article  CAS  Google Scholar 

Dong, Y., et al. 2023. Phosphorylation of PHF2 by AMPK releases the repressive H3K9me2 and inhibits cancer metastasis. Signal Transduction and Targeted Therapy 8 (1): 95.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mitra, A., et al. 2024. Metformin instigates cellular autophagy to ameliorate high-fat diet-induced pancreatic inflammation and fibrosis/EMT in mice. Biochimica et Biophysica Acta, Molecular Basis of Disease 1870 (7): 167313.

Article  CAS  PubMed  Google Scholar 

Lei, R., et al. 2019. Metformin Inhibits Epithelial-to-Mesenchymal Transition of Keloid Fibroblasts via the HIF-1α/PKM2 Signaling Pathway. International Journal of Medical Sciences 16 (7): 960–966.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, M., et al. 2016. Metformin alleviated EMT and fibrosis after renal ischemia-reperfusion injury in rats. Renal Failure 38 (4): 614–621.

Article  CAS  PubMed  Google Scholar 

Meyer, R.K., et al. 2023. AMPK Activation Restores Salivary Function Following Radiation Treatment. Journal of Dental Research 102 (5): 546–554.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nascimento Da Conceicao, V., et al. 2023. Metformin-induced activation of Ca(2+) signaling prevents immune infiltration/pathology in Sjogren's syndrome-prone mouse models. Journal of Translational Autoimmunity. 7:100210.

Wang, L., et al. 2023. Metformin Attenuates TGF-β1-Induced Fibrosis in Salivary Gland: A Preliminary Study. International Journal of Molecular Sciences. 24(22).

Sisto, M., et al. 2019. Interleukin-17 and -22 synergy linking inflammation and EMT-dependent fibrosis in Sjögren’s syndrome. Clinical and Experimental Immunology 198 (2): 261–272.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, J., et al. 2019. The synergistic effect of NOD2 and TLR4 on the activation of autophagy in human submandibular gland inflammation. Journal of Oral Pathology and Medicine 48 (1): 87–95.

Article  CAS  PubMed  Google Scholar 

Hosoi, K., et al. 2020. Dynamics of Salivary Gland AQP5 under Normal and Pathologic Conditions. International Journal of Molecular Sciences. 21(4).

Grande, M.T., et al. 2015. Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nature Medicine 21 (9): 989–997.

Article  CAS  PubMed  Google Scholar 

Lovisa, S., et al. 2015. Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nature Medicine 21 (9): 998–1009.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, N., et al. 2021. Overexpression of FBXO17 Promotes the Proliferation, Migration and Invasion of Glioma Cells Through the Akt/GSK-3β/Snail Pathway. Cell Transplantation 30: 9636897211007396.

Article  PubMed  Google Scholar 

Chi, M., et al. 2022. TEAD4 functions as a prognostic biomarker and triggers EMT via PI3K/AKT pathway in bladder cancer. Journal of Experimental & Clinical Cancer Research 41 (1): 175.

Article  CAS  Google Scholar 

Li, H., et al. 2019. HMGB1-Induced p62 Overexpression Promotes Snail-Mediated Epithelial-Mesenchymal Transition in Glioblastoma Cells via the Degradation of GSK-3beta. Theranostics 9 (7): 1909–1922.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim, J.Y., et al. 2020. Experimental Animal Model Systems for Understanding Salivary Secretory Disorders. International Journal of Molecular Sciences. 21(22).

留言 (0)

沒有登入
gif