Interplay of α-Synuclein Oligomers and Endoplasmic Reticulum Stress in Parkinson'S Disease: Insights into Cellular Dysfunctions

Lashuel, H.A., C.R. Overk, A. Oueslati, and E. Masliah. 2013. The many faces of α-synuclein: From structure and toxicity to therapeutic target. Nature Reviews Neuroscience 14: 38–48.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burré J, Sharma M, Südhof TC. 2018. Cell Biology and Pathophysiology of α-Synuclein. Cold Spring Harb Perspect Med; 8.

Van Laar, V.S., J. Chen, A.D. Zharikov, Q. Bai, R. Di Maio, A.A. Dukes, et al. 2020. α-Synuclein amplifies cytoplasmic peroxide flux and oxidative stress provoked by mitochondrial inhibitors in CNS dopaminergic neurons in vivo. Redox Biology 37: 101695.

Article  PubMed  PubMed Central  Google Scholar 

Burbulla, L.F., P. Song, J.R. Mazzulli, E. Zampese, Y.C. Wong, S. Jeon, et al. 2017. Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson’s disease. Science 357: 1255–1261.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rocha, E.M., B. De Miranda, and L.H. Sanders. 2018. Alpha-synuclein: Pathology, mitochondrial dysfunction and neuroinflammation in Parkinson’s disease. Neurobiology of Diseases 109: 249–257.

Article  CAS  Google Scholar 

Du XY, Xie XX, Liu RT. 2020. The Role of α-Synuclein Oligomers in Parkinson's Disease. Int J Mol Sci; 21.

Badanjak K, Fixemer S, Smajić S, Skupin A, Grünewald A. 2021. The Contribution of Microglia to Neuroinflammation in Parkinson's Disease. Int J Mol Sci; 22.

Li, Y., Y. Xia, S. Yin, F. Wan, J. Hu, L. Kou, et al. 2021. Targeting Microglial α-Synuclein/TLRs/NF-kappaB/NLRP3 Inflammasome Axis in Parkinson’s Disease. Frontiers in Immunology 12: 719807.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu TW, Chen CM, Chang KH. 2022. Biomarker of Neuroinflammation in Parkinson's Disease. Int J Mol Sci; 23.

Hallacli, E., C. Kayatekin, S. Nazeen, X.H. Wang, Z. Sheinkopf, S. Sathyakumar, et al. 2022. The Parkinson’s disease protein alpha-synuclein is a modulator of processing bodies and mRNA stability. Cell 185: 2035-2056.e33.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wong, Y.C., and D. Krainc. 2017. α-synuclein toxicity in neurodegeneration: Mechanism and therapeutic strategies. Nature Medicine 23: 1–13.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Senft, D., and Z.A. Ronai. 2015. UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends in Biochemical Sciences 40: 141–148.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bendor, J.T., T.P. Logan, and R.H. Edwards. 2013. The function of α-synuclein. Neuron 79: 1044–1066.

Article  CAS  PubMed  Google Scholar 

Fusco, G., A. De Simone, T. Gopinath, V. Vostrikov, M. Vendruscolo, C.M. Dobson, et al. 2014. Direct observation of the three regions in α-synuclein that determine its membrane-bound behaviour. Nature Communications 5: 3827.

Article  CAS  PubMed  Google Scholar 

Giasson, B.I., I.V. Murray, J.Q. Trojanowski, and V.M. Lee. 2001. A hydrophobic stretch of 12 amino acid residues in the middle of alpha-synuclein is essential for filament assembly. Journal of Biological Chemistry 276: 2380–2386.

Article  CAS  PubMed  Google Scholar 

Lowe, R., D.L. Pountney, P.H. Jensen, W.P. Gai, and N.H. Voelcker. 2004. Calcium(II) selectively induces alpha-synuclein annular oligomers via interaction with the C-terminal domain. Protein Science 13: 3245–3252.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nielsen, M.S., H. Vorum, E. Lindersson, and P.H. Jensen. 2001. Ca2+ binding to alpha-synuclein regulates ligand binding and oligomerization. Journal of Biological Chemistry 276: 22680–22684.

Article  CAS  PubMed  Google Scholar 

Lautenschläger, J., A.D. Stephens, G. Fusco, F. Ströhl, N. Curry, M. Zacharopoulou, et al. 2018. C-terminal calcium binding of α-synuclein modulates synaptic vesicle interaction. Nature Communications 9: 712.

Article  PubMed  PubMed Central  Google Scholar 

Meuvis, J., M. Gerard, L. Desender, V. Baekelandt, and Y. Engelborghs. 2010. The conformation and the aggregation kinetics of α-synuclein depend on the proline residues in its C-terminal region. Biochemistry 49: 9345–9352.

Article  CAS  PubMed  Google Scholar 

Flierl, A., L.M. Oliveira, L.J. Falomir-Lockhart, S.K. Mak, J. Hesley, F. Soldner, et al. 2014. Higher vulnerability and stress sensitivity of neuronal precursor cells carrying an alpha-synuclein gene triplication. PLoS ONE 9: e112413.

Article  PubMed  PubMed Central  Google Scholar 

Oliveira, L.M., L.J. Falomir-Lockhart, M.G. Botelho, K.H. Lin, P. Wales, J.C. Koch, et al. 2015. Elevated α-synuclein caused by SNCA gene triplication impairs neuronal differentiation and maturation in Parkinson’s patient-derived induced pluripotent stem cells. Cell Death & Disease 6: e1994.

Article  CAS  Google Scholar 

Benskey, M.J., R.G. Perez, and F.P. Manfredsson. 2016. The contribution of alpha synuclein to neuronal survival and function - Implications for Parkinson’s disease. Journal of Neurochemistry 137: 331–359.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ip, C.W., L.C. Klaus, A.A. Karikari, N.P. Visanji, J.M. Brotchie, A.E. Lang, et al. 2017. AAV1/2-induced overexpression of A53T-α-synuclein in the substantia nigra results in degeneration of the nigrostriatal system with Lewy-like pathology and motor impairment: A new mouse model for Parkinson’s disease. Acta Neuropathologica Communications 5: 11.

Article  PubMed  PubMed Central  Google Scholar 

Peng, X., R. Tehranian, P. Dietrich, L. Stefanis, and R.G. Perez. 2005. Alpha-synuclein activation of protein phosphatase 2A reduces tyrosine hydroxylase phosphorylation in dopaminergic cells. Journal of Cell Science 118: 3523–3530.

Article  CAS  PubMed  Google Scholar 

DeLegge, M.H., and A. Smoke. 2008. Neurodegeneration and inflammation. Nutrition in Clinical Practice 23: 35–41.

Article  PubMed  Google Scholar 

Scheiblich, H., C. Dansokho, D. Mercan, S.V. Schmidt, L. Bousset, L. Wischhof, et al. 2021. Microglia jointly degrade fibrillar alpha-synuclein cargo by distribution through tunneling nanotubes. Cell 184: 5089-5106.e21.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang, Q., P. Yang, Y. Liu, J. Ding, M. Lu, and G. Hu. 2023. The interplay between α-Synuclein and NLRP3 inflammasome in Parkinson’s disease. Biomedicine & Pharmacotherapy 168: 115735.

Article  CAS  Google Scholar 

Kouli, A., C.B. Horne, and C.H. Williams-Gray. 2019. Toll-like receptors and their therapeutic potential in Parkinson’s disease and α-synucleinopathies. Brain, Behavior, and Immunity 81: 41–51.

Article  CAS  PubMed  Google Scholar 

Collier, T.J., D.E. Redmond Jr., K. Steece-Collier, J.W. Lipton, and F.P. Manfredsson. 2016. Is Alpha-Synuclein Loss-of-Function a Contributor to Parkinsonian Pathology? Evidence from Non-human Primates. Front Neurosci 10: 12.

PubMed  Google Scholar 

Colla, E., P.H. Jensen, O. Pletnikova, J.C. Troncoso, C. Glabe, and M.K. Lee. 2012. Accumulation of toxic α-synuclein oligomer within endoplasmic reticulum occurs in α-synucleinopathy in vivo. Journal of Neuroscience 32: 3301–3305.

Article  CAS  PubMed  Google Scholar 

Romine, I.C., and R.L. Wiseman. 2019. PERK Signaling Regulates Extracellular Proteostasis of an Amyloidogenic Protein During Endoplasmic Reticulum Stress. Science and Reports 9: 410.

Article  Google Scholar 

Bellani, S., A. Mescola, G. Ronzitti, H. Tsushima, S. Tilve, C. Canale, et al. 2014. GRP78 clustering at the cell surface of neurons transduces the action of exogenous alpha-synuclein. Cell Death and Differentiation 21: 1971–1983.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carrara M, Prischi F, Nowak PR, Kopp MC, Ali MM. 2015. Noncanonical binding of BiP ATPase domain to Ire1 and Perk is dissociated by unfolded protein CH1 to initiate ER stress signaling. Elife; 4.

Credle, J.J., P.A. Forcelli, M. Delannoy, A.W. Oaks, E. Permaul, D.L. Berry, et al. 2015. α-Synuclein-mediated inhibition of ATF6 processing into COPII vesicles disrupts UPR signaling in Parkinson’s disease. Neurobiology of Diseases 76: 112–125.

Article  CAS  Google Scholar 

Donnelly, N., A.M. Gorman, S. Gupta, and A. Samali. 2013. The eIF2α kinases: Their structures and functions. Cellular and Molecular Life Sciences

留言 (0)

沒有登入
gif