Phosphorylation of Serine 536 of p65(RelA) Downregulates Inflammatory Responses

Baker, R.G., M.S. Hayden, and S. Ghosh. 2011. NF-κB, inflammation, and metabolic disease. Cell Metabolism. 13: 11–22. https://doi.org/10.1016/j.cmet.2010.12.008.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Christian, F., E.L. Smith, and R.J. Carmody. 2016. The regulation of NF-κB subunits by phosphorylation. Cells 5: 12. https://doi.org/10.3390/cells5010012.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Jimi, E., N. Takakura, F. Hiura, I. Nakamura, and S. Hirata-Tsuchiya. 2019. The role of NF-κB in physiological bone development and inflammatory bone diseases: Is NF-κB inhibition “Killing two birds with one stone”? Cells 14 (8): 1636. https://doi.org/10.3390/cells8121636.doi:10.3390/cells8121636.

Capece, D., D. Verzella, I. Flati, P. Arboretto, J. Cornice, and G. Franzoso. 2022. NF-κB: Blending metabolism, immunity, and inflammation. Trends in Immunology 43: 757–775. https://doi.org/10.1016/j.it.2022.07.004.

Article  PubMed  CAS  Google Scholar 

Pradère, J.P., C. Hernandez, C. Koppe, R.A. Friedman, T. Luedde, and R.F. Schwabe. 2016. Negative regulation of NF-κB RelA activity by serine 536 phosphorylation. Science Signaling 9: ra85. https://doi.org/10.1126/scisignal.aab2820.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hajishengallis, G. 2015. Periodontitis: From microbial immune subversion to systemic inflammation. Nature Review Immunology 15: 30–44. https://doi.org/10.1038/nri3785.

Article  CAS  Google Scholar 

Kajiya, M., and H. Kurihara. 2021. Molecular mechanisms of periodontal disease. International Journal of Molecular Sciences 22: 930. https://doi.org/10.3390/ijms22020930.

Article  PubMed  PubMed Central  Google Scholar 

Becerra-Ruiz, J.S., C. Guerrero-Velázquez, F. Martínez-Esquivias, L.A. Martínez-Pérez, and J.M. Guzmán-Flores. 2022. Innate and adaptive immunity of periodontal disease. From etiology to alveolar bone loss. Oral Diseases. 28: 1441–1447. https://doi.org/10.1111/odi.13884.

Article  PubMed  Google Scholar 

La, V.D., A.B. Howell, and D. Grenier. 2010. Anti-Porphyromonas gingivalis and anti-inflammatory activities of A-type cranberry proanthocyanidins. Antimicrobial Agents and Chemotherapy 54: 1778–1784. https://doi.org/10.1128/AAC.01432-09.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Crotti, T., M.D. Smith, R. Hirsch, S. Soukoulis, H. Weedon, M. Capone, et al. 2003. Receptor activator NF κB ligand (RANKL) and osteoprotegerin (OPG) protein expression in periodontitis. Journal of Periodontal Research 38: 380–387. https://doi.org/10.1034/j.1600-0765.2003.00615.x.

Article  PubMed  CAS  Google Scholar 

Wang, J., B. Wang, X. Lv, and L. Wang. 2020. NIK inhibitor impairs chronic periodontitis via suppressing non-canonical NF-κB and osteoclastogenesis. Pathogens and Disease 78: ftaa045. https://doi.org/10.1093/femspd/ftaa045.

Article  PubMed  CAS  Google Scholar 

Aoki, T., F. Hiura, A. Li, N. Yang, N. Takakura-Hino, S. Mukai, et al. 2023. Inhibition of non-canonical NF-κB signaling suppresses periodontal inflammation and bone loss. Frontiers in Immunology 14: 1179007. https://doi.org/10.3389/fimmu.2023.1179007.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Takeuchi, H., T. Hirano, S.E. Whitmore, I. Morisaki, A. Amano, and R.J. Lamont. 2013. The serine phosphatase SerB of Porphyromonas gingivalis suppresses IL-8production by dephosphorylation of NF-κB RelA/p65. PLOS Pathogens 9: e1003326. https://doi.org/10.1371/journal.ppat.1003326.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hirata-Tsuchiya, S., H. Fukushima, T. Katagiri, S. Ohte, M. Shin, K. Nagano, et al. 2014. Inhibition of BMP2-induced bone formation by the p65 subunit of NF-κB via an interaction with Smad4. Molecular Endocrinology 28: 1460–1470. https://doi.org/10.1210/me.2014-1094.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gao, J., R. Muroya, F. Huang, K. Nagata, M. Shin, R. Nagano, et al. 2021. Bone morphogenetic protein induces bone invasion of melanoma by epithelial-mesenchymal transition via the Smad1/5 signaling pathway. Laboratory Investigation 101: 1475–1483. https://doi.org/10.1038/s41374-021-00661-y.

Article  PubMed  CAS  Google Scholar 

Abe, T., and G. Hajishengallis. 2013. Optimization of the ligature-induced periodontitis model in mice. Journal of Immunological Methods 394: 49–54. https://doi.org/10.1016/j.jim.2013.05.002.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gao, J., A. Li, S. Fujii, F. Huang, C. Nakatomi, I. Nakamura, et al. 2023. p130Cas is required for androgen-dependent postnatal development regulation of submandibular glands. Scientific Reports 13: 5144. https://doi.org/10.1038/s41598-023-32390-1.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Huang, F., J. Gao, A. Li, A. Mizokami, M. Matsuda, K. Aoki, et al. 2024. Activation of NF-κB signaling regulates ovariectomy-induced bone loss and weight gain. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1870: 167320. https://doi.org/10.1016/j.bbadis.2024.167320.

Article  PubMed  CAS  Google Scholar 

Dong, J., E. Jimi, H. Zhong, M.S. Hayden, and S. Ghosh. 2008. Repression of gene expression by unphosphorylated NF-κB p65 through epigenetic mechanisms. Genes & Development 22: 1159–1173. https://doi.org/10.1101/gad.1657408.

Article  CAS  Google Scholar 

Dong, J., E. Jimi, C. Zeiss, M.S. Hayden, and S. Ghosh. 2010. Constitutively active NF-κB triggers systemicTNF-α-dependent inflammation and localized TNF-α-independent inflammatory disease. Genes & Development 24: 1709–1717. https://doi.org/10.1101/gad.1958410.

Article  CAS  Google Scholar 

Riedlinger, T., M.B. Dommerholt, T. Wijshake, J.K. Kruit, N. Huijkman, D. Dekker, et al. 2017. NF-κB p65 serine 467 phosphorylation sensitizes mice to weight gain and TNFα-or diet-induced inflammation. Biochimica et Biophysica Acta BBA-Molecular Cell Research 1864: 1785–1798. https://doi.org/10.1016/j.bbamcr.2017.07.005.

Article  PubMed  CAS  Google Scholar 

Moles, A., J.A. Butterworth, A. Sanchez, J.E. Hunter, J. Leslie, H. Sellier, et al. 2016. A RelA(p65) Thr505 phospho-site mutation reveals an important mechanism regulating NF-κB-dependent liver regeneration and cancer. Oncogene 35: 4623–4632. https://doi.org/10.1038/onc.2015.526.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Nichols, T.C., T.H. Fischer, E.N. Deliargyris, and A.S. Baldwin Jr. 2001. Role of NF-κB in inflammation, periodontitis, and atherogenesis. Annals of Periodontology 6: 20–29. https://doi.org/10.1902/annals.2001.6.1.20.

Article  PubMed  CAS  Google Scholar 

Balta, M.G., E. Papathanasiou, I.J. Blix, and T.E. Van Dyke. 2021. Host Modulation and treatment of periodontal disease. Journal of Dental Research 2021 (100): 798–809. https://doi.org/10.1177/0022034521995157.

Article  Google Scholar 

留言 (0)

沒有登入
gif