The Potential of Mitochondrial Therapeutics in the Treatment of Oxidative Stress and Inflammation in Aging

John A, Kubosumi A, Reddy PH (2020) Mitochondrial MicroRNAs in aging and neurodegenerative diseases. Cells 9(6):1345. https://doi.org/10.3390/cells9061345

Article  CAS  PubMed  PubMed Central  Google Scholar 

López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153(6):1194–1217. https://doi.org/10.1016/j.cell.2013.05.039

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amorim JA, Coppotelli G, Rolo AP, Palmeira CM, Ross JM, Sinclair DA (2022) Mitochondrial and metabolic dysfunction in ageing and age-related diseases. Nat Rev Endocrinol 18(4):243–258. https://doi.org/10.1038/s41574-021-00626-7

Article  PubMed  PubMed Central  Google Scholar 

Ernster L, Schatz G (1981) Mitochondria: a historical review. J Cell Biol 91(3):227s–255s. https://doi.org/10.1083/jcb.91.3.227s

Article  CAS  PubMed  Google Scholar 

Atlante A, Valenti D (2023) Mitochondria have made a long evolutionary path from ancient bacteria immigrants within eukaryotic cells to essential cellular hosts and key players in human health and disease. Curr Issues Mol Biol 45(5):4451–4479. https://doi.org/10.3390/cimb45050283

Article  CAS  PubMed  PubMed Central  Google Scholar 

Filippi M-D, Ghaffari S (2019) Mitochondria in the maintenance of hematopoietic stem cells: new perspectives and opportunities. Blood 133(18):1943–1952. https://doi.org/10.1182/blood-2018-10-808873

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87(1):99–163. https://doi.org/10.1152/physrev.00013.2006

Article  CAS  PubMed  Google Scholar 

Rossier M (2006) T channels and steroid biosynthesis: in search of a link with mitochondria. Cell Calcium 40(2):155–164. https://doi.org/10.1016/j.ceca.2006.04.020

Article  CAS  PubMed  Google Scholar 

Yager JD, Chen JQ (2007) Mitochondrial estrogen receptors – new insights into specific functions. Trends Endocrinol Metab 18(3):89–91. https://doi.org/10.1016/j.tem.2007.02.006

Article  CAS  PubMed  Google Scholar 

Richter C, Park JW, Ames BN (1988) Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci 85(17):6465–6467. https://doi.org/10.1073/pnas.85.17.6465

Article  CAS  PubMed  PubMed Central  Google Scholar 

Murphy Michael P (2008) How mitochondria produce reactive oxygen species. Biochemical Journal 417(1):1–13. https://doi.org/10.1042/bj20081386

Article  Google Scholar 

Dias-Carvalho A, Sá SI, Carvalho F, Fernandes E, Costa VM (2023) Inflammation as common link to progressive neurological diseases. Arch Toxicol 98(1):95–119. https://doi.org/10.1007/s00204-023-03628-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pradeepkiran JA, Rawat P, Reddy AP, Orlov E, Reddy PH (2024) DDQ anti-aging properties expressed with improved mitophagy in mutant tau HT22 neuronal cells. Mitochondrion 75:101843. https://doi.org/10.1016/j.mito.2024.101843

Article  CAS  PubMed  Google Scholar 

Harman D (2015) The biologic clock: the mitochondria? J Am Geriatr Soc 20(4):145–147. https://doi.org/10.1111/j.1532-5415.1972.tb00787.x

Article  Google Scholar 

Chistiakov DA, Sobenin IA, Revin VV, Orekhov AN, Bobryshev YV (2014) Mitochondrial aging and age-related dysfunction of mitochondria. Biomed Res Int 2014:1–7. https://doi.org/10.1155/2014/238463

Article  CAS  Google Scholar 

Jeong S-Y, Seol D-W (2008) The role of mitochondria in apoptosis. BMB Rep 41(1):11–22. https://doi.org/10.5483/BMBRep.2008.41.1.011

Article  CAS  PubMed  Google Scholar 

Leeuwenburgh C, Gurley CM, Strotman BA, Dupont-Versteegden EE (2005) Age-related differences in apoptosis with disuse atrophy in soleus muscle. Am J Physiol-Regul Integr Comp Physiol 288(5):R1288–R1296. https://doi.org/10.1152/ajpregu.00576.2004

Article  CAS  PubMed  Google Scholar 

Barzilai N, Civitarese AE, Carling S, Heilbronn LK, Hulver MH, Ukropcova B, Deutsch WA et al (2007) Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med 4(3):e76. https://doi.org/10.1371/journal.pmed.0040076

Article  CAS  Google Scholar 

Steiner JL, Murphy EA, McClellan JL, Carmichael MD, Davis JM (2011) Exercise training increases mitochondrial biogenesis in the brain. J Appl Physiol 111(4):1066–1071. https://doi.org/10.1152/japplphysiol.00343.2011

Article  CAS  PubMed  Google Scholar 

Brakedal B, Dölle C, Riemer F, Ma Y, Nido GS, Skeie GO, Craven AR, Schwarzlmüller T et al (2022) The NADPARK study: a randomized phase I trial of nicotinamide riboside supplementation in Parkinson’s disease. Cell Metab 34(3):396-407.e396. https://doi.org/10.1016/j.cmet.2022.02.001

Article  CAS  PubMed  Google Scholar 

Rossman MJ, Santos-Parker JR, Steward CAC, Bispham NZ, Cuevas LM, Rosenberg HL, Woodward KA, Chonchol M, Gioscia-Ryan RA, Murphy MP, Seals DR (2018) Chronic supplementation with a mitochondrial antioxidant (MitoQ) improves vascular function in healthy older adults. Hypertension 71(6):1056–1063. https://doi.org/10.1161/hypertensionaha.117.10787

Article  CAS  PubMed  Google Scholar 

Mortensen SA, Rosenfeldt F, Kumar A, Dolliner P, Filipiak KJ, Pella D, Alehagen U, Steurer G et al (2014) The effect of coenzyme Q 10 on morbidity and mortality in chronic heart failure. JACC: Heart Failure 2(6):641–649. https://doi.org/10.1016/j.jchf.2014.06.008

Article  PubMed  Google Scholar 

Reddy PH, Kshirsagar S, Bose C, Pradeepkiran JA, Hindle A, Singh SP, Reddy AP, Baig J (2023) Rlip reduction induces oxidative stress and mitochondrial dysfunction in mutant Tau-expressed immortalized hippocampal neurons: mechanistic insights. Cells 12(12):1646. https://doi.org/10.3390/cells12121646

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bhatti JS, Kaur S, Mishra J, Dibbanti H, Singh A, Reddy AP, Bhatti GK, Reddy PH (2023) Targeting dynamin-related protein-1 as a potential therapeutic approach for mitochondrial dysfunction in Alzheimer’s disease. Biochim Biophys Acta (BBM) - Mol Basis Dis 1869(7):166798. https://doi.org/10.1016/j.bbadis.2023.166798

Ghosh S, Dhungel S, Shaikh MF, Sinha JK (2024) Editorial: World digestive health day: investigating the link between neurodegenerative disease and gut microbiota. Front Aging Neurosci 15:1351855. https://doi.org/10.3389/fnagi.2023.1351855

Article  PubMed  PubMed Central  Google Scholar 

Sharma H, Ghosh S, Sinha JK (2023) Physiological adaptation: genetic and environmental adaptations. In: Shackelford TK (ed) Encyclopedia of sexual psychology and behavior. Springer, Cham. pp 1–6. https://doi.org/10.1007/978-3-031-08956-5_173-1

Zong Y, Li H, Liao P, Chen L, Pan Y, Zheng Y, Zhang C, Liu D et al (2024) Mitochondrial dysfunction: mechanisms and advances in therapy. Signal Transduct Target Ther 9(1):124. https://doi.org/10.1038/s41392-024-01839-8

Article  PubMed  PubMed Central  Google Scholar 

Nakada K, Sato A, Hayashi J-I (2009) Mitochondrial functional complementation in mitochondrial DNA-based diseases. Int J Biochem Cell Biol 41(10):1907–1913. https://doi.org/10.1016/j.biocel.2009.05.010

Article  CAS  PubMed  Google Scholar 

Chan DC (2012) Fusion and fission: interlinked processes critical for mitochondrial health. Annu Rev Genet 46(1):265–287. https://doi.org/10.1146/annurev-genet-110410-132529

Article  CAS 

留言 (0)

沒有登入
gif