Mild Blast Exposure Dysregulates Metabolic Pathways and Correlation Networking as Evident from LC–MS-Based Plasma Profiling

Chandra N, Sundaramurthy A (2015) Acute pathophysiology of blast injury—from biomechanics to experiments and computations: implications on head and polytrauma. Brain neurotrauma: molecular, neuropsychological, and rehabilitation aspects. CRC Press/Taylor & Francis, Boca Raton (FL), pp 199–258

Google Scholar 

Cernak I, Noble-Haeusslein LJ (2010) Traumatic brain injury: an overview of pathobiology with emphasis on military populations. J Cereb Blood Flow Metab 30:255–266. https://doi.org/10.1038/jcbfm.2009.203

Article  PubMed  Google Scholar 

McDonald SJ, Sharkey JM, Sun M et al (2020) Beyond the brain: peripheral interactions after traumatic brain injury. J Neurotrauma 37:770–781. https://doi.org/10.1089/neu.2019.6885

Article  PubMed  Google Scholar 

Kraus MF, Susmaras T, Caughlin BP et al (2007) White matter integrity and cognition in chronic traumatic brain injury: a diffusion tensor imaging study. Brain 130:2508–2519. https://doi.org/10.1093/brain/awm216

Article  PubMed  Google Scholar 

Okie S (2005) Traumatic brain injury in the war zone. N Engl J Med 352:2043–2047. https://doi.org/10.1056/NEJMp058102

Article  CAS  PubMed  Google Scholar 

Alexander MP (1995) Mild traumatic brain injury: pathophysiology, natural history, and clinical management. Neurology 45:1253–1260. https://doi.org/10.1212/wnl.45.7.1253

Article  CAS  PubMed  Google Scholar 

Zheng F, Zhou Y-T, Feng D-D et al (2020) Metabolomics analysis of the hippocampus in a rat model of traumatic brain injury during the acute phase. Brain Behav 10:e01520. https://doi.org/10.1002/brb3.1520

Article  PubMed  Google Scholar 

Posti JP, Dickens AM, Orešič M et al (2017) Metabolomics profiling as a diagnostic tool in severe traumatic brain injury. Front Neurol 8:398. https://doi.org/10.3389/fneur.2017.00398

Article  PubMed  PubMed Central  Google Scholar 

Young B, Ott L, Phillips R, McClain C (1991) Metabolic management of the patient with head injury. Neurosurg Clin N Am 2:301–320

Article  CAS  PubMed  Google Scholar 

Banoei MM, Casault C, Metwaly SM, Winston BW (2018) Metabolomics and biomarker discovery in traumatic brain injury. J Neurotrauma 35:1831–1848. https://doi.org/10.1089/neu.2017.5326

Article  PubMed  Google Scholar 

Wolf SJ, Bebarta VS, Bonnett CJ et al (2009) Blast injuries. Lancet 374:405–415. https://doi.org/10.1016/S0140-6736(09)60257-9

Article  PubMed  Google Scholar 

Chen Y, Huang W, Constantini S (2013) Concepts and strategies for clinical management of blast-induced traumatic brain injury and posttraumatic stress disorder. J Neuropsychiatry Clin Neurosci 25:103–110. https://doi.org/10.1176/appi.neuropsych.12030058

Article  CAS  PubMed  Google Scholar 

Rodriguez UA, Zeng Y, Deyo D et al (2018) Effects of mild blast traumatic brain injury on cerebral vascular, histopathological, and behavioral outcomes in rats. J Neurotrauma 35:375–392. https://doi.org/10.1089/neu.2017.5256

Article  PubMed  PubMed Central  Google Scholar 

Badea A, Kamnaksh A, Anderson RJ et al (2018) Repeated mild blast exposure in young adult rats results in dynamic and persistent microstructural changes in the brain. Neuroimage Clin 18:60–73. https://doi.org/10.1016/j.nicl.2018.01.007

Article  PubMed  PubMed Central  Google Scholar 

Mishra V, Skotak M, Schuetz H et al (2016) Primary blast causes mild, moderate, severe and lethal TBI with increasing blast overpressures: experimental rat injury model. Sci Rep 6:26992. https://doi.org/10.1038/srep26992

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thomas I, Dickens AM, Posti JP et al (2022) Serum metabolome associated with severity of acute traumatic brain injury. Nat Commun 13:2545. https://doi.org/10.1038/s41467-022-30227-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Johnson CH, Ivanisevic J, Siuzdak G (2016) Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol 17:451–459. https://doi.org/10.1038/nrm.2016.25

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kamnaksh A, Kovesdi E, Kwon S-K et al (2011) Factors affecting blast traumatic brain injury. J Neurotrauma 28:2145–2153. https://doi.org/10.1089/neu.2011.1983

Article  PubMed  Google Scholar 

Kuriakose M, Younger D, Ravula AR et al (2019) Synergistic role of oxidative stress and blood-brain barrier permeability as injury mechanisms in the acute pathophysiology of blast-induced neurotrauma. Sci Rep 9:7717. https://doi.org/10.1038/s41598-019-44147-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Greene NM (1972) Metabolic effects of anesthetics. In: Chenoweth MB (ed) Modern inhalation anesthetics. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 271–287

Chapter  Google Scholar 

Baranovicova E, Kalenska D, Tomascova A et al (2020) Time-related metabolomics study in the rat plasma after global cerebral ischemia and reperfusion: effect of ischemic preconditioning. IUBMB Life 72:2010–2023. https://doi.org/10.1002/iub.2340

Article  CAS  PubMed  Google Scholar 

Maan K, Baghel R, Bakhshi R et al (2022) An integrative chemometric approach and correlative metabolite networking of LC-MS and 1H NMR based urine metabolomics for radiation signatures. Mol Omics 18:214–225. https://doi.org/10.1039/d1mo00399b

Article  CAS  PubMed  Google Scholar 

Cernak I, Wang Z, Jiang J et al (2001) Cognitive deficits following blast injury-induced neurotrauma: possible involvement of nitric oxide. Brain Inj 15:593–612. https://doi.org/10.1080/02699050010009559

Article  CAS  PubMed  Google Scholar 

Cernak I (2015) Blast injuries and blast-induced neurotrauma: overview of pathophysiology and experimental knowledge models and findings. In: Kobeissy FH (ed) Brain neurotrauma: molecular, neuropsychological, and rehabilitation aspects. Frontiers in Neuroengineering. CRC Press/Taylor & Francis, Boca Raton (FL)

Yarnell AM, Barry ES, Mountney A et al (2016) The Revised Neurobehavioral Severity Scale (NSS-R) for rodents. Curr Protoc Neurosci 75:9.52.1-9.52.16. https://doi.org/10.1002/cpns.10

Article  PubMed  Google Scholar 

Maan K, Baghel R, Dhariwal S et al (2023) Metabolomics and transcriptomics based multi-omics integration reveals radiation-induced altered pathway networking and underlying mechanism. NPJ Syst Biol Appl 9:42. https://doi.org/10.1038/s41540-023-00305-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xia J, Psychogios N, Young N, Wishart DS (2009) MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res 37:W652–W660. https://doi.org/10.1093/nar/gkp356

Article  CAS  PubMed  PubMed Central  Google Scholar 

R Core Team R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/, R version 4.2.2 (2022–10–31 ucrt). Accessed 1 Mar 2023

Basu S, Duren W, Evans CR et al (2017) Sparse network modeling and metscape-based visualization methods for the analysis of large-scale metabolomics data. Bioinformatics 33:1545–1553. https://doi.org/10.1093/bioinformatics/btx012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu Y, Pang Z, Xia J (2023) Comprehensive investigation of pathway enrichment methods for functional interpretation of LC–MS global metabolomics data. Brief Bioinform 24:bbac553. https://doi.org/10.1093/bib/bbac553

Article  PubMed  Google Scholar 

Zhou G, Xia J (2018) OmicsNet: a web-based tool for creation and visual analysis of biological networks in 3D space. Nucleic Acids Res 46:W514–W522. https://doi.org/10.1093/nar/gky510

Article  CAS  PubMed 

留言 (0)

沒有登入
gif