Hormonal influence: unraveling the impact of sex hormones on vascular smooth muscle cells

Naamneh Elzenaty R, du Toit T, Fluck CE. Basics of androgen synthesis and action. Best Pract Res Clin Endocrinol Metab. 2022;36(4):101665. https://doi.org/10.1016/j.beem.2022.101665.

Article  CAS  PubMed  Google Scholar 

Miao CY, Li ZY. The role of perivascular adipose tissue in vascular smooth muscle cell growth. Br J Pharmacol. 2012;165(3):643–58. https://doi.org/10.1111/j.1476-5381.2011.01404.x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sorokin V, Vickneson K, Kofidis T, Woo CC, Lin XY, Foo R, et al. Role of vascular smooth muscle cell plasticity and interactions in Vessel Wall inflammation. Front Immunol. 2020;11:599415. https://doi.org/10.3389/fimmu.2020.599415.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Song J, Wan Y, Rolfe BE, Campbell JH, Campbell GR. Effect of estrogen on vascular smooth muscle cells is dependent upon cellular phenotype. Atherosclerosis. 1998;140(1):97–104. https://doi.org/10.1016/s0021-9150(98)00122-1.

Article  CAS  PubMed  Google Scholar 

Touyz RM, Alves-Lopes R, Rios FJ, Camargo LL, Anagnostopoulou A, Arner A, et al. Vascular smooth muscle contraction in hypertension. Cardiovasc Res. 2018;114(4):529–39. https://doi.org/10.1093/cvr/cvy023.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mendelsohn ME, Karas RH. Estrogen and the blood vessel wall. Curr Opin Cardiol. 1994;9(5):619–26. https://doi.org/10.1097/00001573-199409000-00018.

Article  CAS  PubMed  Google Scholar 

Dehaini H, Fardoun M, Abou-Saleh H, El-Yazbi A, Eid AA, Eid AH. Estrogen in vascular smooth muscle cells: a friend or a foe? Vascul Pharmacol. 2018;111:15–21. https://doi.org/10.1016/j.vph.2018.09.001.

Article  CAS  PubMed  Google Scholar 

Ruehlmann DO, Mann GE. Actions of oestrogen on vascular endothelial and smooth-muscle cells. Biochem Soc Trans. 1997;25(1):40–5. https://doi.org/10.1042/bst0250040.

Article  CAS  PubMed  Google Scholar 

Zha B, Qiu P, Zhang C, Li X, Chen Z. GPR30 promotes the phenotypic switching of vascular smooth muscle cells via activating the AKT and ERK pathways. Onco Targets Ther. 2020;13:3801–8. https://doi.org/10.2147/OTT.S244128.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kopp J, Collin O, Villar M, Mullins D, Bergh A, Hokfelt T. Regulation of neuropeptide Y Y1 receptors by testosterone in vascular smooth muscle cells in rat testis. Neuroendocrinology. 2008;88(3):216–26. https://doi.org/10.1159/000138250.

Article  CAS  PubMed  Google Scholar 

Yerly A, van der Vorst EPC, Baumgartner I, Bernhard SM, Schindewolf M, Doring Y. Sex-specific and hormone-related differences in vascular remodelling in atherosclerosis. Eur J Clin Invest. 2023;53(1):e13885. https://doi.org/10.1111/eci.13885.

Article  CAS  PubMed  Google Scholar 

Stone JC, MacDonald MJ. The impacts of endogenous progesterone and exogenous progestin on vascular endothelial cell, and smooth muscle cell function: a narrative review. Vascul Pharmacol. 2023;152:107209. https://doi.org/10.1016/j.vph.2023.107209.

Article  CAS  PubMed  Google Scholar 

Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev. 2004;84(3):767–801. https://doi.org/10.1152/physrev.00041.2003.

Article  CAS  PubMed  Google Scholar 

Rensen SS, Doevendans PA, van Eys GJ. Regulation and characteristics of vascular smooth muscle cell phenotypic diversity. Neth Heart J. 2007;15(3):100–8. https://doi.org/10.1007/BF03085963.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rzucidlo EM, Martin KA, Powell RJ. Regulation of vascular smooth muscle cell differentiation. J Vasc Surg. 2007;45 Suppl A(6):A25-32. https://doi.org/10.1016/j.jvs.2007.03.001

Gao H, Steffen MC, Ramos KS. Osteopontin regulates alpha-smooth muscle actin and calponin in vascular smooth muscle cells. Cell Biol Int. 2012;36(2):155–61. https://doi.org/10.1042/CBI20100240.

Article  CAS  PubMed  Google Scholar 

McDonald OG, Wamhoff BR, Hoofnagle MH, Owens GK. Control of SRF binding to CArG box chromatin regulates smooth muscle gene expression in vivo. J Clin Invest. 2006;116(1):36–48. https://doi.org/10.1172/JCI26505.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Long X, Bell RD, Gerthoffer WT, Zlokovic BV, Miano JM. Myocardin is sufficient for a smooth muscle-like contractile phenotype. Arterioscler Thromb Vasc Biol. 2008;28(8):1505–10. https://doi.org/10.1161/ATVBAHA.108.166066.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Horita HN, Simpson PA, Ostriker A, Furgeson S, Van Putten V, Weiser-Evans MC, et al. Serum response factor regulates expression of phosphatase and tensin homolog through a microRNA network in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2011;31(12):2909–19. https://doi.org/10.1161/ATVBAHA.111.233585.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shankman LS, Gomez D, Cherepanova OA, Salmon M, Alencar GF, Haskins RM, et al. KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat Med. 2015;21(6):628–37. https://doi.org/10.1038/nm.3866.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Van Der Heide LP, Hoekman MF, Smidt MP. The ins and outs of FoxO shuttling: mechanisms of FoxO translocation and transcriptional regulation. Biochem J. 2004;380(Pt 2):297–309. https://doi.org/10.1042/BJ20040167.

Article  PubMed  Google Scholar 

Wamhoff BR, Hoofnagle MH, Burns A, Sinha S, McDonald OG, Owens GK. A G/C element mediates repression of the SM22alpha promoter within phenotypically modulated smooth muscle cells in experimental atherosclerosis. Circ Res. 2004;95(10):981–8. https://doi.org/10.1161/01.RES.0000147961.09840.fb.

Article  CAS  PubMed  Google Scholar 

Alencar GF, Owsiany KM, Karnewar S, Sukhavasi K, Mocci G, Nguyen AT, et al. Stem cell pluripotency genes Klf4 and Oct4 regulate Complex SMC phenotypic changes critical in late-stage atherosclerotic lesion pathogenesis. Circulation. 2020;142(21):2045–59. https://doi.org/10.1161/CIRCULATIONAHA.120.046672.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang Y, Yu S, Liu Y, Zhang J, Han L, Xu Z. MicroRNA-124 controls human vascular smooth muscle cell phenotypic switch via Sp1. Am J Physiol Heart Circ Physiol. 2017;313(3):H641–9. https://doi.org/10.1152/ajpheart.00660.2016.

Article  PubMed  Google Scholar 

Torella D, Iaconetti C, Catalucci D, Ellison GM, Leone A, Waring CD, et al. MicroRNA-133 controls vascular smooth muscle cell phenotypic switch in vitro and vascular remodeling in vivo. Circ Res. 2011;109(8):880–93. https://doi.org/10.1161/CIRCRESAHA.111.240150.

Article  CAS  PubMed  Google Scholar 

Davis-Dusenbery BN, Wu C, Hata A. Micromanaging vascular smooth muscle cell differentiation and phenotypic modulation. Arterioscler Thromb Vasc Biol. 2011;31(11):2370–7. https://doi.org/10.1161/ATVBAHA.111.226670.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun H, Cai S, Zhang M, Zhao J, Wei S, Luo Y, et al. MicroRNA-206 regulates vascular smooth muscle cell phenotypic switch and vascular neointimal formation. Cell Biol Int. 2017;41(7):739–48. https://doi.org/10.1002/cbin.10768.

Article 

留言 (0)

沒有登入
gif