Heterogeneity in the formation of primary and secondary visual fields during human prenatal development

Smart IH, McSherry GM. Growth patterns in the lateral wall of the mouse telencephalon. II. Histological changes during and subsequent to the period of isocortical neuron production. J Anat. 1982;134:415–52.

CAS  PubMed  PubMed Central  Google Scholar 

Takahashi T, Nowakowski R, Caviness V. Early ontogeny of the secondary proliferative population of the embryonic murine cerebral wall. J Neurosci. 1995;15:6058–68.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Letinic K, Zoncu R, Rakic P. Origin of GABAergic neurons in the human neocortex. 2002;645–9.

Rakic P. Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol. 1972;145:61–83.

Article  CAS  PubMed  Google Scholar 

Schmechel DE, Rakic P. Arrested proliferation of radial glial cells during midgestation in rhesus monkey. Nature. 1979;277:303–5.

Article  CAS  PubMed  Google Scholar 

Miller JA, Ding S-L, Sunkin SM, Smith KA, Ng L, Szafer A, et al. Transcriptional landscape of the prenatal human brain. Nature. 2014;508:199–206.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krasnoshchekova EI, Zykin PA, Tkachenko LA. Smolina TIu. [Features of human cortical pyramidal neurons development during second gestational trimester]. Fiziol Cheloveka. 2010;36:65–71.

CAS  PubMed  Google Scholar 

Molnár Z, Clowry GJ, Šestan N, Alzu’bi A, Bakken T, Hevner RF, et al. New insights into the development of the human cerebral cortex. J Anat. 2019;235:432–51.

Article  PubMed  PubMed Central  Google Scholar 

Amunts K, Zilles K. Architectonic mapping of the human brain beyond Brodmann. Neuron. 2015;88:1086–107.

Article  CAS  PubMed  Google Scholar 

Brodmann K. Vergleichende Lokalisationslehre Der Grosshirnrinde in Ihren Prinzipien dargestellt auf Grund Des Zellenbaues. Leipzig: Barth JA; 1909.

Google Scholar 

Filimonoff IN. Uber die Variabilitat Der Grosshirnrindenstruktur. Mitteilung II. Regio Occipitalis Beim Erwachsenen Menschen. J Psychol Neurol. 1932;45:65–137.

Google Scholar 

Amunts K, Malikovic A, Mohlberg H, Schormann T, Zilles K. Brodmann’s Areas 17 and 18 brought into Stereotaxic Space—where and how variable? NeuroImage. 2000;11:66–84.

Article  CAS  PubMed  Google Scholar 

Wilms M, Eickhoff SB, Hömke L, Rottschy C, Kujovic M, Amunts K, et al. Comparison of functional and cytoarchitectonic maps of human visual areas V1, V2, V3d, V3v, and V4(v). NeuroImage. 2010;49:1171–9.

Article  PubMed  Google Scholar 

Tootell RBH, Mendola JD, Hadjikhani NK, Ledden PJ, Liu AK, Reppas JB, et al. Functional analysis of V3A and related areas in human visual cortex. J Neurosci. 1997;17:7060–78.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Malikovic A, Amunts K, Schleicher A, Mohlberg H, Eickhoff SB, Wilms M, et al. Cytoarchitectonic Analysis of the human extrastriate cortex in the region of V5/MT+: a probabilistic, stereotaxic map of Area hOc5. Cereb Cortex. 2006;17:562–74.

Article  PubMed  Google Scholar 

Hasnain MK, Fox PT, Woldorff MG. Hemispheric asymmetry of sulcus-function correspondence: quantization and developmental implications. Hum Brain Mapp. 2006;27:277–87.

Article  PubMed  Google Scholar 

DeYoe EA, Carman GJ, Bandettini P, Glickman S, Wieser J, Cox R et al. Mapping striate and extrastriate visual areas in human cerebral cortex. Proceedings of the National Academy of Sciences. 1996;93:2382–6.

Rakic P. Prenatal development of the visual system in rhesus monkey. Philosophical Trans Royal Soc Lond B Biol Sci. 1977;278:245–60.

Article  CAS  Google Scholar 

Kostovic I, Rakic P. Development of prestriate visual projections in the monkey and human fetal cerebrum revealed by transient cholinesterase staining. J Neurosci. 1984;4:25–42.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kostovic I, Rakic P. Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain. J Comp Neurol. 1990;297:441–70.

Article  CAS  PubMed  Google Scholar 

Kostović I, Judaš M. The development of the subplate and thalamocortical connections in the human foetal brain. Acta Paediatr [Internet]. 2010;99:1119–27. https://onlinelibrary.wiley.com/doi/https://doi.org/10.1111/j.1651-2227.2010.01811.x

Warner CE, Kwan WC, Bourne JA. The early maturation of visual cortical area MT is dependent on input from the retinorecipient medial portion of the inferior pulvinar. J Neurosci. 2012;32:17073–85.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mundinano IC, Kwan WC, Bourne JA. Retinotopic specializations of cortical and thalamic inputs to area MT. Proc Natl Acad Sci U S A. 2019;116:23326–31.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao QL, Yan XX, Luo XG, Garey LJ. Prenatal development of parvalbumin immunoreactivity in the human striate cortex. Cereb Cortex. 1996;6:620–30.

Article  CAS  PubMed  Google Scholar 

Yoshioka T, Hendry SHC. Compartmental organization of layer IVA in human primary visual cortex. J Comp Neurol. 1995;359:213–20.

Article  CAS  PubMed  Google Scholar 

Letinic K, Kostovic I. Postnatal development of calcium-binding proteins calbindin and parvalbumin in human visual cortex. Cereb Cortex. 1998;8:660–9.

Article  CAS  PubMed  Google Scholar 

Hendrickson AE, van Brederode JFM, Mulligan KA, Celio MR. Development of the calcium-binding proteins parvalbumin and calbindin in monkey striate cortex. J Comp Neurol. 1991;307:626–46.

Article  CAS  PubMed  Google Scholar 

Astakhova АТ, Voronkova IK, Kolosova VA, Obolochkova G. On the appearance of fissures and convolutions of the cerebral cortex during embryogenesis. Collect Sci Articles Krasnoyarsk. 1958;5:61–2. [Krasnoyarsk].

Google Scholar 

Savel’ev SV. The mechanisms of formation of embryonic calcarine sulcus of the human brain. Rep Acad Sci USSR. 1989;309:204–7.

Google Scholar 

Godovalova OS, Savel’ev SV, Besova NV. Determination of human fetal age from the anatomic characteristics of the brain. Rossiysky Vestnik akushera-ginekologa. 2008;4:52–8.

Google Scholar 

Garel C, Chantrel E, Brisse H, Elmaleh M, Luton D, Oury JF et al. Fetal cerebral cortex: normal gestational landmarks identified using prenatal MR imaging. Am J Neuroradiol. 2001;184.

Ruiz A, Sembely-Taveau C, Paillet C, Sirinelli D. Repères échographiques de gyration cérébrale fœtale normale. J Radiol. 2006;87:49–55.

Article  CAS  PubMed  Google Scholar 

Duan W, Zhang YP, Hou Z, Huang C, Zhu H, Zhang CQ, et al. Novel insights into NeuN: from neuronal marker to Splicing Regulator. Mol Neurobiol. Humana Press Inc.; 2016. pp. 1637–47.

D’Arcangelo G, Miao G, Chen G, Scares S-C, Morgan HD, Curran JI. A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature. 1995;374:719–23.

Article  PubMed  Google Scholar 

Gilmore EC, Herrup K. Cortical development: receiving Reelin. Curr Biol. 2000;10:R162–6.

Article  CAS  PubMed  Google Scholar 

Fanò G, Biocca S, Fulle S, Mariggiò MA, Belia S, Calissano P. The S-100: a protein family in search of a function. Prog Neurobiol. 1995;46:71–82.

Article  PubMed  Google Scholar 

Donato R, Cannon BR, Sorci G, Riuzzi F, Hsu K, Weber DJ, et al. Functions of S100 proteins. Curr Mol Med. 2013;13:24–57.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mariani M, Karki R, Spennato M, Pandya D, He S, Andreoli M, et al. Class III β-tubulin in normal and cancer tissues. Gene. 2015;563:109–14.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif