Low Thyroid Hormones Level Attenuates Mitochondrial Dysfunction and Right Ventricular Failure in Pulmonary Hypertensive Rats

Schermuly RT, Ghofrani HA, Wilkins MR, Grimminger F. Mechanisms of disease: pulmonary arterial hypertension. Nat Rev Cardiol. 2011;8(8):443–55. https://doi.org/10.1038/nrcardio.2011.87.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Van Wolferen SA, Marcus JT, Boonstra A, et al. Prognostic value of right ventricular mass, volume, and function in idiopathic pulmonary arterial hypertension. Eur Heart J. 2007;28(10):1250–7. https://doi.org/10.1093/eurheartj/ehl477.

Article  PubMed  Google Scholar 

Brewis MJ, Bellofiore A, Vanderpool RR, et al. Imaging right ventricular function to predict outcome in pulmonary arterial hypertension. Int J Cardiol. 2016;218:206–11. https://doi.org/10.1016/j.ijcard.2016.05.015.

Article  PubMed  PubMed Central  Google Scholar 

Li JH, Safford RE, Aduen JF, et al. Pulmonary hypertension and thyroid disease. Chest. 2007;132(3):793–7. https://doi.org/10.1378/chest.07-0366.

Article  PubMed  Google Scholar 

Curnock AL, Dweik RD, Higgins BH, Saadi HF, Arroliga AC. High prevalence of hypothyroidism in patients with primary pulmonary hypertension. Am J Med Sci. 1999;318(5):289–92. https://doi.org/10.1016/S0002-9629(15)40640-8.

Article  CAS  PubMed  Google Scholar 

Chu JW, Kao PN, Faul JL, Doyle RL. High prevalence of autoimmune thyroid disease in pulmonary arterial hypertension. Chest. 2002;122(5):1668–73. https://doi.org/10.1378/chest.122.5.1668.

Article  PubMed  Google Scholar 

Richter MJ, Sommer N, Schermuly R, et al. The prognostic impact of thyroid function in pulmonary hypertension. J Hear Lung Transplant. 2016;35(12):1427–34. https://doi.org/10.1016/j.healun.2016.05.022.

Article  Google Scholar 

Miura Y, Fukumoto Y, Sugimura K, et al. Identification of new prognostic factors of pulmonary hypertension. Circ J. 2010;74(9):1965–71. https://doi.org/10.1253/circj.CJ-10-0270.

Article  PubMed  Google Scholar 

Siu C-W, Zhang X-H, Yung C, Kung AWC, Lau C-P, Tse H-F. hemodynamic changes in hyperthyroidism-related pulmonary hypertension: a prospective echocardiographic study. J Clin Endocrinol Metab. 2007;92(5):1736–42. https://doi.org/10.1210/jc.2006-1877.

Article  CAS  PubMed  Google Scholar 

Wassen FWJS, Schiel AE, Kuiper GGJM, et al. Induction of thyroid hormone-degrading deiodinase in cardiac hypertrophy and failure. Endocrinology. 2002;143(7):2812–5. https://doi.org/10.1210/endo.143.7.8985.

Article  CAS  PubMed  Google Scholar 

Al Husseini A, Bagnato G, Farkas L, et al. Thyroid hormone is highly permissive in angioproliferative pulmonary hypertension in rats. Eur Respir J Eur Respir Soc. 2013;41(1):104–14. https://doi.org/10.1183/09031936.00196511

Olivares EL, Marassi MP, Fortunato RS, et al. Thyroid function disturbance and type 3 iodothyronine deiodinase induction after myocardial infarction in rats—a time course study. Endocrinology. 2007;148(10):4786–92. https://doi.org/10.1210/en.2007-0043.

Article  CAS  PubMed  Google Scholar 

Ueta CB, Oskouei BN, Olivares EL, et al. Absence of myocardial thyroid hormone inactivating deiodinase results in restrictive cardiomyopathy in mice. Mol Endocrinol. 2012;26(5):809–18. https://doi.org/10.1210/me.2011-1325.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Seara FAC, Araujo IG, Império GE, et al. Propranolol inhibits myocardial infarction-induced brown adipose tissue D2 activation and maintains a low thyroid hormone state in rats. Braz J Med Biol Res. 2019;52(10): e8491. https://doi.org/10.1590/1414-431x20198491.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wassner AJ, Jugo RH, Dorfman DM, et al. Myocardial induction of type 3 deiodinase in dilated cardiomyopathy. Thyroid. 2017;27(5):732–7. https://doi.org/10.1089/thy.2016.0570.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pol CJ, Muller A, Zuidwijk MJ, et al. Left-ventricular remodeling after myocardial infarction is associated with a cardiomyocyte-specific hypothyroid condition. Endocrinology. 2011;152(2):669–79. https://doi.org/10.1210/en.2010-0431.

Article  CAS  PubMed  Google Scholar 

Janssen R, Zuidwijk M, Muller A, et al. Cardiac expression of deiodinase type 3 (Dio3) following myocardial infarction is associated with the induction of a pluripotency microRNA signature from the Dlk1-Dio3 genomic region. Endocrinology. 2013;154(6):1973–1978. https://doi.org/10.1210/en.2012-2017.

Seara FAC, Maciel L, Barbosa RAQ, et al. Cardiac ischemia/reperfusion injury is inversely affected by thyroid hormones excess or deficiency in male Wistar rats. Calvert J, editor. PLoS One. 2018;13(1):e0190355. https://doi.org/10.1371/journal.pone.0190355

Lardy HA, Feldott G. Metabolic effects of thyroxine in vitro. Ann N Y Acad Sci. 1951;54(4):636–48. https://doi.org/10.1111/j.1749-6632.1951.tb54465.x.

Article  CAS  PubMed  Google Scholar 

Piao L, Marsboom G, Archer SL. Mitochondrial metabolic adaptation in right ventricular hypertrophy and failure. J Mol Med. 2010;88(10):1011–20. https://doi.org/10.1007/s00109-010-0679-1.

Article  CAS  PubMed  Google Scholar 

Gomez-Arroyo J, Mizuno S, Szczepanek K, et al. Metabolic gene remodeling and mitochondrial dysfunction in failing right ventricular hypertrophy secondary to pulmonary arterial hypertension. Circ Hear Fail. 2013;6(1):136–44. https://doi.org/10.1161/CIRCHEARTFAILURE.111.966127.

Article  CAS  Google Scholar 

Enache I, Charles A-L, Bouitbir J, et al. Skeletal muscle mitochondrial dysfunction precedes right ventricular impairment in experimental pulmonary hypertension. Mol Cell Biochem. 2013;373(1–2):161–70. https://doi.org/10.1007/s11010-012-1485-6.

Article  CAS  PubMed  Google Scholar 

Redout E, Wagner M, Zuidwijk M, et al. Right-ventricular failure is associated with increased mitochondrial complex II activity and production of reactive oxygen species. Cardiovasc Res. 2007;75(4):770–81. https://doi.org/10.1016/j.cardiores.2007.05.012.

Article  CAS  PubMed  Google Scholar 

Pereira SL, Kummerle AE, Fraga CAM, et al. A novel Ca2+ channel antagonist reverses cardiac hypertrophy and pulmonary arteriolar remodeling in experimental pulmonary hypertension. Eur J Pharmacol. 2013;702(1–3):316–22. https://doi.org/10.1016/j.ejphar.2013.01.050.

Article  CAS  PubMed  Google Scholar 

Seara FAC, Arantes PC, Domingos AE, et al. Cardiac electrical and contractile disorders promoted by anabolic steroid overdose are associated with late autonomic imbalance and impaired Ca2+ handling. Steroids. 2019;148:1–10. https://doi.org/10.1016/j.steroids.2019.04.001.

Article  CAS  PubMed  Google Scholar 

Alencar AKN, Pereira SL, Montagnoli TL, et al. Beneficial effects of a novel agonist of the adenosine A2A receptor on monocrotaline-induced pulmonary hypertension in rats. Br J Pharmacol. 2013;169(5):953–62. https://doi.org/10.1111/bph.12193.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gedik N, Maciel L, Schulte C, et al. Cardiomyocyte mitochondria as targets of humoral factors released by remote ischemic preconditioning. Arch Med Sci. 2017;2(2):448–58. https://doi.org/10.5114/aoms.2016.61789.

Article  CAS  Google Scholar 

Matta L, Fonseca TS, Faria CC, et al. The effect of acute aerobic exercise on redox homeostasis and mitochondrial function of rat white adipose tissue. Oxid Med Cell Longev. 2021;2021(1):1–15. https://doi.org/10.1155/2021/4593496. Bernardi M, editor.

Bianco AC, Anderson G, Forrest D, et al. American Thyroid Association guide to investigating thyroid hormone economy and action in rodent and cell models. Thyroid. 2014;24(1):88–168. https://doi.org/10.1089/thy.2013.0109.

Article  PubMed  PubMed Central  Google Scholar 

Sun C-K, Yuen C-M, Kao Y-H, et al. Propylthiouracil attenuates monocrotaline-induced pulmonary arterial hypertension in rats. Circ J. 2009;73(9):1722–1730. https://doi.org/10.1253/circj.CJ-09-0074.

Ferraz AP, Seara FAC, Baptista EF, et al. BKCa channel activation attenuates the pathophysiological progression of monocrotaline-induced pulmonary arterial hypertension in Wistar rats. Cardiovasc Drugs Ther. 2021;53(4):719–32. https://doi.org/10.1007/s10557-020-07115-5.

Article  CAS  Google Scholar 

Marvisi M, Zambrelli P, Brianti M, et al. Pulmonary hypertension is frequent in hyperthyroidism and normalizes after therapy. Eur J Intern Med. 2006;17(4):267–71. https://doi.org/10.1016/j.ejim.2005.11.023.

留言 (0)

沒有登入
gif