Exercise Enhances Anti-contractile Effects of PVAT Through Endogenous H2S in High-Fat Diet–Induced Obesity Hypertension

Hall JE, do Carmo JM, da Silva AA, Wang Z, Hall ME. Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms. Circ Res. 2015;116(6):991–1006. https://doi.org/10.1161/CIRCRESAHA.116.305697.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Piche ME, Poirier P, Lemieux I, Despres JP. Overview of epidemiology and contribution of obesity and body fat distribution to cardiovascular disease: an update. Prog Cardiovasc Dis. 2018;61(2):103–13. https://doi.org/10.1016/j.pcad.2018.06.004.

Article  PubMed  Google Scholar 

Huang Cao ZF, Stoffel E, Cohen P. Role of perivascular adipose tissue in vascular physiology and pathology. Hypertension. 2017;69(5):770–7. https://doi.org/10.1161/hypertensionaha.116.08451.

Article  PubMed  Google Scholar 

Stanek A, Brozyna-Tkaczyk K, Myslinski W. The role of obesity-induced perivascular adipose tissue (PVAT) dysfunction in vascular homeostasis. Nutrients. 2021;13(11). https://doi.org/10.3390/nu13113843.

Liao J, Yin H, Huang J, Hu M. Dysfunction of perivascular adipose tissue in mesenteric artery is restored by aerobic exercise in high-fat diet induced obesity. Clin Exp Pharmacol Physiol. 2021;48(5):697–703. https://doi.org/10.1111/1440-1681.13404.

Article  CAS  PubMed  Google Scholar 

Fang L, Zhao J, Chen Y, et al. Hydrogen sulfide derived from periadventitial adipose tissue is a vasodilator. J Hypertens. 2009;27(11):2174–85. https://doi.org/10.1097/HJH.0b013e328330a900.

Article  CAS  PubMed  Google Scholar 

Katsouda A, Szabo C, Papapetropoulos A. Reduced adipose tissue H2S in obesity. Pharmacol Res. 2018;128:190–9. https://doi.org/10.1016/j.phrs.2017.09.023.

Article  CAS  PubMed  Google Scholar 

Schleifenbaum J, Kohn C, Voblova N, et al. Systemic peripheral artery relaxation by KCNQ channel openers and hydrogen sulfide. J Hypertens. 2010;28(9):1875–82. https://doi.org/10.1097/HJH.0b013e32833c20d5.

Article  CAS  PubMed  Google Scholar 

Collin M, Anuar FB, Murch O, et al. Inhibition of endogenous hydrogen sulfide formation reduces the organ injury caused by endotoxemia. Br J Pharmacol. 2005;146(4):498–505. https://doi.org/10.1038/sj.bjp.0706367.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Szabo C. Hydrogen sulphide and its therapeutic potential. Nat Rev Drug Discov. 2007;6(11):917–35. https://doi.org/10.1038/nrd2425.

Article  CAS  PubMed  Google Scholar 

Wagner CA. Hydrogen sulfide: a new gaseous signal molecule and blood pressure regulator. J Nephrol. 2009;22(2):173–6.

CAS  PubMed  Google Scholar 

El-Sayed SS, Zakaria MN, Abdel-Ghany RH, Abdel-Rahman AA. Cystathionine-γ lyase-derived hydrogen sulfide mediates the cardiovascular protective effects of moxonidine in diabetic rats. Eur J Pharmacol. 2016;783:73–84. https://doi.org/10.1016/j.ejphar.2016.04.054.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mitidieri E, Turnaturi C, Vanacore D, Sorrentino R, d’Emmanuel di Villa Bianca R. The role of perivascular adipose tissue-derived hydrogen sulfide in the control of vascular homeostasis. Antioxid Redox Signal. 2022;37(1):84–97. https://doi.org/10.1089/ars.2021.0147.

Article  CAS  PubMed  Google Scholar 

Beltowski J. Endogenous hydrogen sulfide in perivascular adipose tissue: role in the regulation of vascular tone in physiology and pathology. Can J Physiol Pharmacol. 2013;91(11):889–98. https://doi.org/10.1139/cjpp-2013-0001.

Article  CAS  PubMed  Google Scholar 

Cacanyiova S, Golas S, Zemancikova A, et al. The vasoactive role of perivascular adipose tissue and the sulfide signaling pathway in a nonobese model of metabolic syndrome. Biomolecules. 2021;11(1):108. https://doi.org/10.3390/biom11010108.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Golas S, Berenyiova A, Majzunova M, et al. The vasoactive effect of perivascular adipose tissue and hydrogen sulfide in thoracic aortas of normotensive and spontaneously hypertensive rats. Biomolecules. 2022;12(3):457. https://doi.org/10.3390/biom12030457.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kiss L, Deitch EA, Szabo C. Hydrogen sulfide decreases adenosine triphosphate levels in aortic rings and leads to vasorelaxation via metabolic inhibition. Life Sci. 2008;83(17–18):589–94. https://doi.org/10.1016/j.lfs.2008.08.006.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aalbaek F, Bonde L, Kim S, Boedtkjer E. Perivascular tissue inhibits rho-kinase-dependent smooth muscle Ca(2+) sensitivity and endothelium-dependent H2 S signalling in rat coronary arteries. J Physiol. 2015;593(21):4747–64. https://doi.org/10.1113/JP271006.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reilly MP, Lehrke M, Wolfe ML, et al. Resistin is an inflammatory marker of atherosclerosis in humans. Circulation. 2005;111(7):932–9. https://doi.org/10.1161/01.CIR.0000155620.10387.43.

Article  CAS  PubMed  Google Scholar 

Zhao W, Zhang J, Lu Y, Wang R. The vasorelaxant effect of H(2)S as a novel endogenous gaseous K(ATP) channel opener. Embo J. 2001;20(21):6008–16. https://doi.org/10.1093/emboj/20.21.6008.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lobov GI, Sokolova IB, Gorshkova OP, Shvetsova ME, Dvoretskii DP. Contribution of hydrogen sulfide to dilation of rat cerebral arteries after ischemia/reperfusion injury. Bull Exp Biol Med. 2020;168(5):597–601. https://doi.org/10.1007/s10517-020-04759-z.

Article  CAS  PubMed  Google Scholar 

Mustafa AK, Sikka G, Gazi SK, et al. Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circ Res. 2011;109(11):1259–68. https://doi.org/10.1161/CIRCRESAHA.111.240242.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tsao C-M, Lee M-S, Liao M-H, et al. Role of nitric oxide and hydrogen sulfide from perivascular adipose tissue in vascular tone of resistant mesenteric arteries from endotoxemic rats. Nitric Oxide Biol Chem. 2012;27:S39–40. https://doi.org/10.1016/j.niox.2012.04.142.

Article  Google Scholar 

Sousa AS, Sponton ACS, Trifone CB, Delbin MA. Aerobic exercise training prevents perivascular adipose tissue-induced endothelial dysfunction in thoracic aorta of obese mice. Front Physiol. 2019;10:1009. https://doi.org/10.3389/fphys.2019.01009.

Article  PubMed  PubMed Central  Google Scholar 

Wang J, Polaki V, Chen S, Bihl JC. Exercise improves endothelial function associated with alleviated inflammation and oxidative stress of perivascular adipose tissue in type 2 diabetic mice. Oxid Med Cell Longev. 2020;2020:8830537. https://doi.org/10.1155/2020/8830537.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif