Brenner H, Kloor M, Pox CP (2014) Colorectal cancer. Lancet 383:1490–1502. https://doi.org/10.1016/S0140-6736(13)61649-9
Kuipers EJ, Grady WM, Lieberman D, Seufferlein T, Sung JJ, Boelens PG, van de Velde CJH, Watanabe T (2015) Colorectal cancer. Nat Rev Dis Primers 1:15065. https://doi.org/10.1038/nrdp.2015.65
Article PubMed PubMed Central Google Scholar
Galluzzi L, Kepp O, Vander Heiden MG, Kroemer G (2013) Metabolic targets for cancer therapy. Nat Rev Drug Discov 12:829–846. https://doi.org/10.1038/nrd4145
Article CAS PubMed Google Scholar
Luengo A, Gui DY, Vander Heiden MG (2017) Targeting metabolism for cancer therapy cell. Chem Biol 24:1161–1180. https://doi.org/10.1016/j.chembiol.2017.08.028
Li J, Eu JQ, Kong LR, Wang L, Lim YC, Goh BC, Wong ALA (2020) Targeting metabolism in cancer cells and the tumour microenvironment for cancer therapy. Molecules 25:4831. https://doi.org/10.3390/molecules25204831
Article CAS PubMed PubMed Central Google Scholar
Crispo F, Condelli V, Lepore S, Notarangelo T, Sgambato A, Esposito F, Maddalena F, Landriscina M (2019) Metabolic dysregulations and epigenetics: a bidirectional interplay that drives tumor progression. Cells 8:798. https://doi.org/10.3390/cells8080798
Article CAS PubMed PubMed Central Google Scholar
Liberti MV, Locasale JW (2016) The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci 41:211–218. https://doi.org/10.1016/j.tibs.2015.12.001
Article CAS PubMed PubMed Central Google Scholar
Hensley CT, Faubert B, Yuan Q, Lev-Cohain N, Jin E, Kim J, Jiang L, Ko B, Skelton R, Loudat L et al (2016) Metabolic heterogeneity in human lung tumors. Cell 164:681–694. https://doi.org/10.1016/j.cell.2015.12.034
Article CAS PubMed PubMed Central Google Scholar
de la Cruz López KG, Toledo Guzmán ME, Ortiz Sánchez E, García Carrancá A (2019) mTORC1 as a regulator of mitochondrial functions and a therapeutic target in cancer. Front Oncol 9:1373. https://doi.org/10.3389/fonc.2019.01373
Article PubMed PubMed Central Google Scholar
Lee YG, Park DH, Chae YC (2022) Role of mitochondrial stress response in cancer progression. Cells 11:771. https://doi.org/10.3390/cells11050771
Article CAS PubMed PubMed Central Google Scholar
Sugiura A, McLelland GL, Fon EA, McBride HM (2014) A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. EMBO J 33:2142–2156. https://doi.org/10.15252/embj.201488104
Article CAS PubMed PubMed Central Google Scholar
Vyas S, Zaganjor E, Haigis MC (2016) Mitochondria and cancer. Cell 166:555–566. https://doi.org/10.1016/j.cell.2016.07.002
Article CAS PubMed PubMed Central Google Scholar
Wengert LA, Backe SJ, Bourboulia D, Mollapour M, Woodford MR (2022) TRAP1 chaperones the metabolic switch in cancer. Biomolecules 12:786. https://doi.org/10.3390/biom12060786
Article CAS PubMed PubMed Central Google Scholar
Costantino E, Maddalena F, Calise S, Piscazzi A, Tirino V, Fersini A, Ambrosi A, Neri V, Esposito F, Landriscina M (2009) TRAP1, a novel mitochondrial chaperone responsible for multi-drug resistance and protection from apoptosis in human colorectal carcinoma cells. Cancer Lett 279:39–46. https://doi.org/10.1016/j.canlet.2009.01.018
Article CAS PubMed Google Scholar
Sciacovelli M, Guzzo G, Morello V, Frezza C, Zheng L, Nannini N, Calabrese F, Laudiero G, Esposito F, Landriscina M et al (2013) The mitochondrial chaperone TRAP1 promotes neoplastic growth by inhibiting succinate dehydrogenase. Cell Metab 17:988–999. https://doi.org/10.1016/j.cmet.2013.04.019
Article CAS PubMed PubMed Central Google Scholar
Maddalena F, Simeon V, Vita G, Bochicchio A, Possidente L, Sisinni L, Lettini G, Condelli V, Matassa DS, Li Bergolis V et al (2017) TRAP1 protein signature predicts outcome in human metastatic colorectal carcinoma. Oncotarget 8(13):21229–21240. https://doi.org/10.18632/oncotarget.15070
Article PubMed PubMed Central Google Scholar
Maddalena F, Condelli V, Matassa DS, Pacelli C, Scrima R, Lettini G, Li Bergolis V, Pietrafesa M, Crispo F, Piscazzi A et al (2020) TRAP1 enhances Warburg metabolism through modulation of PFK1 expression/activity and favors resistance to EGFR inhibitors in human colorectal carcinomas. Mol Oncol 14:3030–3047. https://doi.org/10.1002/1878-0261.12814
Article CAS PubMed PubMed Central Google Scholar
Dharaskar SP, Paithankar K, Vijayavittal AK, Kara HS, Subbarao SA (2020) Mitochondrial chaperone, TRAP1 modulates mitochondrial dynamics and promotes tumor metastasis. Mitochondrion 54:92–101. https://doi.org/10.1016/j.mito.2020.08.001
Bruno G, Li Bergolis V, Piscazzi A, Crispo F, Condelli V, Zoppoli P, Maddalena F, Pietrafesa M, Giordano G, Matassa DS et al (2022) TRAP1 regulates the response of colorectal cancer cells to hypoxia and inhibits ribosome biogenesis under conditions of oxygen deprivation. Int J Oncol 60:79. https://doi.org/10.3892/ijo.2022.5369
Article CAS PubMed PubMed Central Google Scholar
Avolio R, Agliarulo I, Criscuolo D, Sarnataro D, Auriemma M, De Lella S, Pennacchio S, Calice G, Ng MY, Giorgi C et al (2023) Cytosolic and mitochondrial translation elongation are coordinated through the molecular chaperone TRAP1 for the synthesis and import of mitochondrial proteins. Genome Res 33:1242–1257. https://doi.org/10.1101/gr.277755.123
Article PubMed PubMed Central Google Scholar
Landriscina M, Laudiero G, Maddalena F, Amoroso MR, Piscazzi A, Cozzolino F, Monti M, Garbi C, Fersini A, Pucci P et al (2010) Mitochondrial chaperone Trap1 and the calcium binding protein Sorcin interact and protect cells against apoptosis induced by antiblastic agents. Cancer Res 70:6577–6586. https://doi.org/10.1158/0008-5472.CAN-10-1256
Article CAS PubMed Google Scholar
Tang Z, Kang B, Li C, Chen T, Zhang Z (2019) GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res 47:W556–W560. https://doi.org/10.1093/nar/gkz430
Article CAS PubMed PubMed Central Google Scholar
Chandrashekar DS, Karthikeyan SK, Korla PK, Patel H, Shovon AR, Athar M, Netto GJ, Qin ZS, Kumar S, Manne U et al (2022) UALCAN: an update to the integrated cancer data analysis platform. Neoplasia 25:18–27. https://doi.org/10.1016/j.neo.2022.01.001
Article CAS PubMed PubMed Central Google Scholar
van der Wijst MGP, van Tilburg AY, Ruiters MH, Rots MG (2017) Experimental mitochondria-targeted DNA methylation identifies GpC methylation, not CpG methylation, as potential regulator of mitochondrial gene expression. Sci Rep 7:177. https://doi.org/10.1038/s41598-017-00263-z
Article CAS PubMed PubMed Central Google Scholar
Amoroso MR, Matassa DS, Laudiero G, Egorova AV, Polishchuk RS, Maddalena F, Piscazzi A, Paladino S, Sarnataro D, Garbi C et al (2012) TRAP1 and the proteasome regulatory particle TBP7/Rpt3 interact in the endoplasmic reticulum and control cellular ubiquitination of specific mitochondrial proteins. Cell Death Differ 19(4):592–604. https://doi.org/10.1038/cdd.2011.128
留言 (0)