Oral Administration of Piperine Ameliorates Experimental Autoimmune Uveitis

Fang, C.B., D.X. Zhou, S.X. Zhan, Y. He, Z. Lin, C. Huang, and J. Li. 2013. Amelioration of experimental autoimmune uveitis by leflunomide in Lewis rats. PLoS ONE 8 (4): e62071. https://doi.org/10.1371/journal.pone.0062071.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, N., S. Chen, Z. Zhang, X. Cui, L. Wu, K. Guo, et al. 2021. Overexpressing Kallistatin aggravates experimental autoimmune uveitis through Promoting Th17 differentiation. Frontiers in Immunology 12: 756423. https://doi.org/10.3389/fimmu.2021.756423.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Glover, K., D. Mishra, and T.R.R. Singh. 2021. Epidemiology of ocular manifestations in autoimmune disease. Frontiers in Immunology 12: 744396. https://doi.org/10.3389/fimmu.2021.744396.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gamalero, L., G. Simonini, G. Ferrara, S. Polizzi, T. Giani, and R. Cimaz. 2019. Evidence-based treatment for uveitis. The Israel Medical Association Journal 21 (7): 475–479.

PubMed  Google Scholar 

Kasper, M., K. Walscheid, B. Laffer, D. Bauer, M. Busch, L. Wildschütz, et al. 2018. The phenotype of monocytes in anterior uveitis depends on the HLA-B27 status. Frontiers in Immunology 9: 1773. https://doi.org/10.3389/fimmu.2018.01773.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gilger, B. C. 2022. Developing advanced therapeutics through the study of naturally occurring immune-mediated ocular disease in domestic animals. American Journal of Veterinary Research 83(11): najvr.22.08.0145. https://doi.org/10.2460/ajvr.22.08.0145.

Simeonova, G.P., S.Z. Krastev, and R.S. Simeonov. 2016. Immunological and pathological investigations in equine experimental uveitis. Veterinary Research Communications 40 (3–4): 107–115. https://doi.org/10.1007/s11259-016-9659-4.

Article  PubMed  Google Scholar 

Diedrichs-Möhring, M., U. Kaufmann, and G. Wildner. 2018. The immunopathogenesis of chronic and relapsing autoimmune uveitis - Lessons from experimental rat models. Progress in Retinal and Eye Research 65: 107–126. https://doi.org/10.1016/j.preteyeres.2018.02.003.

Article  CAS  PubMed  Google Scholar 

Etemadi, S., S.M. Abtahi Froushani, S.M. Hashemi Asl, and A. Mahmoudian. 2022. Combined atorvastatin and pentoxifylline in ameliorating inflammation induced by complete Freund’s adjuvant. Inflammopharmacology 30 (3): 935–944. https://doi.org/10.1007/s10787-022-00957-5.

Article  CAS  PubMed  Google Scholar 

Golbahari, S., and S.M. Abtahi Froushani. 2019. Synergistic benefits of Nicotine and Thymol in alleviating experimental rheumatoid arthritis. Life Sciences 239: 117037. https://doi.org/10.1016/j.lfs.2019.117037.

Article  CAS  PubMed  Google Scholar 

Bansal, S., V.A. Barathi, D. Iwata, and R. Agrawal. 2015. Experimental autoimmune uveitis and other animal models of uveitis: An update. Indian Journal of Ophthalmology 63 (3): 211–218. https://doi.org/10.4103/0301-4738.156914.

Article  PubMed  PubMed Central  Google Scholar 

Agarwal, R.K., P.B. Silver, and R.R. Caspi. 2012. Rodent models of experimental autoimmune uveitis. Methods in Molecular Biology 900: 443–469. https://doi.org/10.1007/978-1-60761-720-4_22.

Article  CAS  PubMed  Google Scholar 

Petrovska, B.B. 2012. Historical review of medicinal plants’ usage. Pharmacognosy Reviews 6 (11): 1–5. https://doi.org/10.4103/0973-7847.95849.

Article  PubMed  PubMed Central  Google Scholar 

Haq, I.U., M. Imran, M. Nadeem, T. Tufail, T.A. Gondal, and M.S. Mubarak. 2021. Piperine: A review of its biological effects. Phytotherapy Research 35 (2): 680–700. https://doi.org/10.1002/ptr.6855.

Article  CAS  PubMed  Google Scholar 

Sudjarwo, S.A., K. Eraiko, G.W. Sudjarwo, and Koerniasari. 2017. Protective effects of piperine on lead acetate induced-nephrotoxicity in rats. Iranian Journal of Basic Medical Sciences 20 (11): 1227–31. https://doi.org/10.22038/ijbms.2017.9487.

Article  PubMed  PubMed Central  Google Scholar 

Quijia, C.R., V.H. Araujo, and M. Chorilli. 2021. Piperine: Chemical, biological and nanotechnological applications. Acta Pharmaceutica 71 (2): 185–213. https://doi.org/10.2478/acph-2021-0015.

Article  CAS  PubMed  Google Scholar 

Rodgers, G., C.D. Doucette, D.A. Soutar, R.S. Liwski, and D.W. Hoskin. 2016. Piperine impairs the migration and T cell-activating function of dendritic cells. Toxicology Letters 242: 23–33. https://doi.org/10.1016/j.toxlet.2015.11.025.

Article  CAS  PubMed  Google Scholar 

Chuchawankul, S., N. Khorana, and Y. Poovorawan. 2012. Piperine inhibits cytokine production by human peripheral blood mononuclear cells. Genetics and Molecular Research 11 (1): 617–627. https://doi.org/10.4238/2012.March.14.5.

Article  CAS  PubMed  Google Scholar 

Nasrnezhad, R., S. Halalkhor, F. Sadeghi, and F. Pourabdolhossein. 2021. Piperine improves experimental autoimmune encephalomyelitis (EAE) in Lewis rats through its neuroprotective, anti-inflammatory, and antioxidant effects. Molecular Neurobiology 58 (11): 5473–5493. https://doi.org/10.1007/s12035-021-02497-5.

Article  CAS  PubMed  Google Scholar 

Baito, Q.N., H.M. Jaafar, and T.A.M. Mohammad. 2023. Piperine suppresses inflammatory fibroblast-like synoviocytes derived from rheumatoid arthritis patients Via NF-κB inhibition. Cellular Immunology 391–392: 104752. https://doi.org/10.1016/j.cellimm.2023.104752.

Article  CAS  PubMed  Google Scholar 

Caspi, R.R. 2003. Experimental autoimmune uveoretinitis in the rat and mouse. Curr Protoc Immunol 15: 15.6.1–6.20. https://doi.org/10.1002/0471142735.im1506s53.

Article  Google Scholar 

Arroul-Lammali, A., Z. Djeraba, M. Belkhelfa, H. Belguendouz, D. Hartani, O.S. Lahlou-Boukoffa, and C. Touil-Boukoffa. 2012. Early involvement of nitric oxide in mechanisms of pathogenesis of experimental autoimmune uveitis induced by interphotoreceptor retinoid-binding protein (IRBP). Journal Francais d’Ophtalmologie 35 (4): 251–259. https://doi.org/10.1016/j.jfo.2011.05.003.

Article  CAS  PubMed  Google Scholar 

Bosch-Morell, F., J. Romá, F.J. Puertas, N. Marín, M. Díaz-Llopis, and F.J. Romero. 1999. Efficacy of the antioxidant ebselen in experimental uveitis. Free Radical Biology & Medicine 27 (3–4): 388–391. https://doi.org/10.1016/s0891-5849(99)00067-2.

Article  CAS  Google Scholar 

Asghar, K., M.T. Ashiq, B. Zulfiqar, A. Mahroo, K. Nasir, and S. Murad. 2015. Indoleamine 2,3-dioxygenase expression and activity in patients with hepatitis C virus-induced liver cirrhosis. Experimental and Therapeutic Medicine 9 (3): 901–904. https://doi.org/10.3892/etm.2014.2146.

Article  PubMed  Google Scholar 

Kumar, A., D. Sasmal, and N. Sharma. 2015. Immunomodulatory role of piperine in deltamethrin induced thymic apoptosis and altered immune functions. Environmental Toxicology and Pharmacology. 39 (2): 504–514. https://doi.org/10.1016/j.etap.2014.12.021.

Article  CAS  PubMed  Google Scholar 

Dhivya, V., L.B. Priya, H.T. Chirayil, S. Sathiskumar, C.Y. Huang, and V.V. Padma. 2017. Piperine modulates isoproterenol induced myocardial ischemia through antioxidant and anti-dyslipidemic effect in male Wistar rats. Biomedicine & Pharmacotherapy 87: 705–713. https://doi.org/10.1016/j.biopha.2017.01.002.

Article  CAS  Google Scholar 

Gaweł, S., M. Wardas, E. Niedworok, and P. Wardas. 2004. Malondialdehyde (MDA) as a lipid peroxidation marker. Wiadomosci Lekarskie 57 (9–10): 453–455.

PubMed  Google Scholar 

Liversidge, J., A. Dick, and S. Gordon. 2002. Nitric oxide mediates apoptosis through formation of peroxynitrite and Fas/Fas-ligand interactions in experimental autoimmune uveitis. American Journal of Pathology 160 (3): 905–916. https://doi.org/10.1016/s0002-9440(10)64913-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ahmad, H.I., A. Jabbar, N. Mushtaq, Z. Javed, M.U. Hayyat, J. Bashir, et al. 2022. Immune tolerance vs. immune resistance: The interaction between host and pathogens in infectious diseases. Frontiers in Veterinary Science 9: 827407. https://doi.org/10.3389/fvets.2022.827407.

留言 (0)

沒有登入
gif