Selective disruption of synaptic NMDA receptors of the hippocampal trisynaptic circuit in Aβ pathology

Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI et al. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacol Rev [Internet]. 2021 [cited 2024 Mar 15];73:1469–658. https://pubmed.ncbi.nlm.nih.gov/34753794/

Paoletti P, Bellone C, Zhou Q. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Publishing Group [Internet]. 2013;14:383–400. https://doi.org/10.1038/nrn3504. Available from: sci-hub.tw/.

Article  CAS  Google Scholar 

Wang R, Reddy PH. Role of glutamate and NMDA receptors in Alzheimer’s Disease. J Alzheimer’s Disease. 2017;57:1041–8.

Article  CAS  Google Scholar 

Chen S, Xu D, Fan L, Fang Z, Wang X, Li M. Roles of N-Methyl-D-Aspartate receptors (NMDARs) in Epilepsy. Front Mol Neurosci. 2022;14:797253.

Article  PubMed  PubMed Central  Google Scholar 

Huang Y, Mucke L. Alzheimer mechanisms and therapeutic strategies. Cell [Internet]. 2012;148:1204–22. https://doi.org/10.1016/j.cell.2012.02.040

Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron [Internet]. 1994 [cited 2024 Mar 15];12:529–40. https://pubmed.ncbi.nlm.nih.gov/7512349/

Watanabe M, Inoue Y, Sakimura K, Mishina M. Distinct distributions of five N-methyl-D-aspartate receptor channel subunit mRNAs in the forebrain. J Comp Neurol [Internet]. 1993 [cited 2024 Mar 15];338:377–90. https://pubmed.ncbi.nlm.nih.gov/8113446/

Fritschy J-M, Weinmann O, Wenzel A, Benke D. Synapse-Specific Localization of NMDA and GABA A Receptor Subunits Revealed by Antigen-Retrieval Immunohistochemistry. J Comp Neurol [Internet]. 1998 [cited 2024 Mar 15];390:194–210. https://onlinelibrary.wiley.com/terms-and-conditions

Watanabe M, Fukaya M, Sakimura K, Manabe T, Mishina M, Inoue Y. Selective scarcity of NMDA receptor channel subunits in the stratum lucidum (mossy fibre-recipient layer) of the mouse hippocampal CA3 subfield. Eur J Neurosci. 1998;10:478–87.

Article  CAS  PubMed  Google Scholar 

DeCarli C, Mungas D, Harvey D, Reed B, Weiner M, Chui H et al. Memory impairment, but not cerebrovascular disease, predicts progression of MCI to dementia. Neurology [Internet]. 2004 [cited 2024 Mar 15];63:220–7. https://pubmed.ncbi.nlm.nih.gov/15277612/

Lacy JW, Yassa MA, Stark SM, Muftuler LT, Stark CEL. Distinct pattern separation related transfer functions in human CA3/dentate and CA1 revealed using high-resolution fMRI and variable mnemonic similarity. Learn Mem [Internet]. 2010 [cited 2024 Mar 15];18:15–8. https://pubmed.ncbi.nlm.nih.gov/21164173/

Yassa MA, Stark SM, Bakker A, Albert MS, Gallagher M, Stark CEL. High-resolution structural and functional MRI of hippocampal CA3 and dentate gyrus in patients with amnestic Mild Cognitive Impairment. Neuroimage [Internet]. 2010 [cited 2024 Mar 15];51:1242–52. https://pubmed.ncbi.nlm.nih.gov/20338246/

Takumi Y, Ramírez-León V, Laake P, Rinvik E, Ottersen OP. Different modes of expression of AMPA and NMDA receptors in hippocampal synapses. Nat Neurosci. 1999;2:618–24.

Article  CAS  PubMed  Google Scholar 

Racca C, Stephenson FA, Streit P, Roberts JDB, Somogyi P. NMDA receptor content of synapses in stratum radiatum of the hippocampal CA1 area. J Neurosci. 2000;20:2512–22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nyíri G, Stephenson FA, Freund TF, Somogyi P. Large variability in synaptic N-methyl-D-aspartate receptor density on interneurons and a comparison with pyramidal-cell spines in the rat hippocampus. Neuroscience [Internet]. 2003 [cited 2024 Mar 15];119:347–63. https://pubmed.ncbi.nlm.nih.gov/12770551/

Berg LK, Larsson M, Morland C, Gundersen V. Pre- and postsynaptic localization of NMDA receptor subunits at hippocampal mossy fibre synapses. Neuroscience [Internet]. 2013 [cited 2024 Mar 15];230:139–50. https://pubmed.ncbi.nlm.nih.gov/23159309/

Bashir ZI, Alford S, Davies SN, Randall AD, Collingridge GL. Long-term potentiation of NMDA receptor-mediated synaptic transmission in the hippocampus. Nature [Internet]. 1991 [cited 2024 Mar 15];349:156–8. https://pubmed.ncbi.nlm.nih.gov/1846031/

Rebola N, Lujan R, Cunha RA, Mulle C. Adenosine A2A receptors are essential for long-term potentiation of NMDA-EPSCs at hippocampal mossy fiber synapses. Neuron [Internet]. 2008 [cited 2024 Mar 15];57:121–34. https://pubmed.ncbi.nlm.nih.gov/18184569/

Morris RGM, Anderson E, Lynch GS, Baudry M. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature [Internet]. 1986 [cited 2024 Mar 15];319:774–6. https://pubmed.ncbi.nlm.nih.gov/2869411/

Selkoe DJ. Alzheimer’s Disease Is a Synaptic Failure. Science (1979) [Internet]. 2002;298:789–91. https://www.science.org/doi/https://doi.org/10.1126/science.1074069

Alfaro-Ruiz R, Aguado C, Martín-Belmonte A, Moreno-Martínez AE, Merchán-Rubira J, Hernández F et al. Different modes of synaptic and extrasynaptic NMDA receptor alteration in the hippocampus of P301S tau transgenic mice. Brain Pathol [Internet]. 2023 [cited 2024 Mar 15];33. https://pubmed.ncbi.nlm.nih.gov/36058615/

Jankowsky JL, Slunt HH, Ratovitski T, Jenkins NA, Copeland NG, Borchelt DR. Co-expression of multiple transgenes in mouse CNS: a comparison of strategies. Biomol Eng [Internet]. 2001;17:157–65. https://linkinghub.elsevier.com/retrieve/pii/S1389034401000673

Jankowsky JL, Fadale DJ, Anderson J, Xu GM, Gonzales V, Jenkins NA et al. Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Hum Mol Genet [Internet]. 2004 [cited 2024 Mar 15];13:159–70. https://pubmed.ncbi.nlm.nih.gov/14645205/

Garcia-Alloza M, Robbins EM, Zhang-Nunes SX, Purcell SM, Betensky RA, Raju S, et al. Characterization of amyloid deposition in the APPswe/PS1dE9 mouse model of Alzheimer disease. Neurobiol Dis. 2006;24:516–24.

Article  CAS  PubMed  Google Scholar 

Gimbel DA, Nygaard HB, Coffey EE, Gunther EC, Laurén J, Gimbel ZA, et al. Memory impairment in transgenic alzheimer mice requires cellular prion protein. J Neurosci. 2010;30:6367–74.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Siegel SJ, Brose N, Janssen WG, Gasic GP, Jahn R, Heinemann SF et al. Regional, cellular, and ultrastructural distribution of N-methyl-D-aspartate receptor subunit 1 in monkey hippocampus. Proc Natl Acad Sci U S A [Internet]. 1994 [cited 2024 Mar 15];91:564–8. https://europepmc.org/articles/PMC42989

Aguado C, Martín-Belmonte A, Alfaro-Ruiz R, Martínez-Moreno AE, Luján R, Histoblot. A sensitive method to quantify the expression of proteins in normal and pathological conditions. Histol Histopathol [Internet]. 2023 [cited 2024 Mar 15];38:725–37. https://pubmed.ncbi.nlm.nih.gov/36648032/

Martín-Belmonte A, Aguado C, Alfaro-Ruíz R, Moreno-Martínez AE, de la Ossa L, Martínez-Hernández J et al. Reduction in the neuronal surface of post and presynaptic GABAB receptors in the hippocampus in a mouse model of Alzheimer’s disease. Brain Pathol [Internet]. 2020 [cited 2024 Mar 15];30:554–75. https://pubmed.ncbi.nlm.nih.gov/31729777/

Tanaka JI, Matsuzaki M, Tarusawa E, Momiyama A, Molnar E, Kasai H, et al. Number and density of AMPA receptors in single synapses in immature cerebellum. J Neurosci. 2005;25:799–807.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luján R, Aguado C, Ciruela F, Cózar J, Kleindienst D, de la Ossa L, et al. Differential association of GABA B receptors with their effector ion channels in Purkinje cells. Brain Struct Funct. 2018;223:1565–87.

Article  PubMed  Google Scholar 

Chicurel ME, Harris KM. Three-dimensional analysis of the structure and composition of CA3 branched dendritic spines and their synaptic relationships with mossy fiber boutons in the rat hippocampus. Journal of Comparative Neurology [Internet]. 1992 [cited 2024 Jun 14];325:169–82. https://onlinelibrary.wiley.com/doi/full/https://doi.org/10.1002/cne.903250204

Chen Y, Fu AKY, Ip NY. Synaptic dysfunction in Alzheimer’s disease: Mechanisms and therapeutic strategies. Pharmacol Ther [Internet]. 2019 [cited 2024 Mar 15];195:186–98. https://pubmed.ncbi.nlm.nih.gov/30439458/

Meftah S, Gan J. Alzheimer’s disease as a synaptopathy: Evidence for dysfunction of synapses during disease progression. Front Synaptic Neurosci [Internet]. 2023 [cited 2024 Mar 15];15. https://pubmed.ncbi.nlm.nih.gov/36970154/

Malinow R. New developments on the role of NMDA receptors in Alzheimer’s disease. Curr Opin Neurobiol [Internet]. 2012 [cited 2024 Mar 15];22:559–63. https://pubmed.ncbi.nlm.nih.gov/21962484/

Avila J, Llorens-Martín M, Pallas-Bazarra N, Bolós M, Perea JR, Rodríguez-Matellán A et al. Cognitive Decline in Neuronal Aging and Alzheimer’s Disease: Role of NMDA Receptors and Associated Proteins. Front Neurosci [Internet]. 2017 [cited 2024 Mar 15];11:626. /pmc/articles/PMC5687061/

Volianskis A, Køstner R, Mølgaard M, Hass S, Jensen MS. Episodic memory deficits are not related to altered glutamatergic synaptic transmission and plasticity in the CA1 hippocampus of the APPswe/PS1δE9-deleted transgenic mice model of ß-amyloidosis. Neurobiol Aging [Internet]. 2010 [cited 2024 Mar 15];31:1173–87. https://pubmed.ncbi.nlm.nih.gov/18790549/

Hynd MR, Scott HL, Dodd PR. Selective loss of NMDA receptor NR1 subunit isoforms in Alzheimer’s disease. J Neurochem [Internet]. 2004 [cited 2024 Mar 15];89:240–7. https://pubmed.ncbi.nlm.nih.gov/15030408/

Hynd MR, Scott HL, Dodd PR. Glutamate(NMDA) receptor NR1 subunit mRNA expression in Alzheimer’s disease. J Neurochem [Internet]. 2001 [cited 2024 Mar 15];78:175–82. https://pubmed.ncbi.nlm.nih.gov/11432984/

Jacob CP, Koutsilieri E, Bartl J, Neuen-Jacob E, Arzberger T, Zander N et al. Alterations in expression of glutamatergic transporters and receptors in sporadic Alzheimer’s disease. J Alzheimers Dis [Internet]. 2007 [cited 2024 Mar 15];11:97–116. https://pubmed.ncbi.nlm.nih.gov/17361039/

Bi H, Sze CI. N-methyl-D-aspartate receptor subunit NR2A and NR2B messenger RNA levels are altered in the hippocampus and entorhinal cortex in Alzheimer’s disease. J Neurol Sci [Internet]. 2002 [cited 2024 Mar 15];200:11–8. https://pubmed.ncbi.nlm.nih.gov/12127670/

Yeung JHY, Walby JL, Palpagama TH, Turner C, Waldvogel HJ, Faull RLM et al. Glutamatergic receptor expression changes in the Alzheimer’s disease hippocampus and entorhinal cortex. Brain Pathology [Internet]. 2021 [cited 2024 Mar 15];31:13005. /pmc/articles/PMC8549033/

Viana Da Silva S, Zhang P, Haberl MG, Labrousse V, Grosjean N, Blanchet C et al. Hippocampal Mossy Fibers Synapses in CA3 Pyramidal Cells Are Altered at an Early Stage in a Mouse Model of Alzheimer’s Disease. J Neurosci [Internet]. 2019 [cited 2024 Mar 15];39:4193–205. https://pubmed.ncbi.nlm.nih.gov/30886015/

Xu L, Zhou Y, Hu L, Jiang H, Dong Y, Shen H et al. Deficits in N-Methyl-D-Aspartate Receptor Function and Synaptic Plasticity in Hippocampal CA1 in APP/PS1 Mouse Model of Alzheimer’s Disease. Front Aging Neurosci [Internet]. 2021 [cited 2024 Mar 15];13. https://pubmed.ncbi.nlm.nih.gov/34916926/

Sze CI, Bi H, Kleinschmidt-DeMasters BK, Filley CM, Martin LJ. N-Methyl-D-aspartate receptor subunit proteins and their phosphorylation status are altered selectively in Alzheimer’s disease. J Neurol Sci [Internet]. 2001 [cited 2024 Mar 15];182:151–9. https://pubmed.ncbi.nlm.nih.gov/11137521/

Driscoll I, Howard SR, Stone JC, Monfils MH, Tomanek B, Brooks WM et al. The aging hippocampus: a multi-level analysis in the rat. Neuroscience [Internet]. 2006 [cited 2024 Mar 15];139:1173–85. https://pubmed.ncbi.nlm.nih.gov/16564634/

Oh MM, Disterhoft JF. Learning and aging affect neuronal excitability and learning. Neurobiol Learn Mem [Internet]. 2020 [cited 2024 Mar 15];167. https://pubmed.ncbi.nlm.nih.gov/31786311/

Kumar A. NMDA Receptor Function During Senescence: Implication on Cognitive Performance. Front Neurosci [Internet]. 2015 [cited 2024 Mar 15];9. https://pubmed.ncbi.nlm.nih.gov/26732087/

Amar F, Sherman MA, Rush T, Larson M, Boyle G, Chang L et al. The amyloid-β oligomer Aβ*56 induces specific alterations in neuronal signaling that lead to tau phosphorylation and aggregation. Sci Signal [Internet]. 2017 [cited 2024 Mar 15];10. https://pubmed.ncbi.nlm.nih.gov/28487416/

Shankar GM, Bloodgood BL, Townsend M, Walsh DM, Selkoe DJ, Sabatini BL. Natural oligomers of the Alzheimer amyloid-β protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci. 2007;27:2866–75.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lacor PN, Buniel MC, Furlow PW, Sanz Clemente A, Velasco PT, Wood M et al. Aβ Oligomer-Induced Aberrations in Synapse Composition, Shape, and Density Provide a Molecular Basis for Loss of Connectivity in Alzheimer’s Disease. Journal of Neuroscience [Internet]. 2007;27:796–807. http://www.jneurosci.org/cgi/doi/https://doi.org/10.1523/JNEUROSCI.3501-06.2007

Amaral DG. Emerging principles of intrinsic hippocampal organization. Curr Opin Neurobiol [Internet]. 1993 [cited 2024 Mar 15];3:225–9. https://pubmed.ncbi.nlm.nih.gov/8390320/

Tanaka JI, Matsuzaki M, Tarusawa E, Momiyama A, Molnar E, Kasai H et al. Number and density of AMPA receptors in single synapses in immature cerebellum. J Neurosci [Internet]. 2005 [cited 2022 Sep 27];25:799–807. https://pubmed.ncbi.nlm.nih.gov/15673659/

Antal M, Fukazawa Y, Eördögh M, Muszil D, Molnár E, Itakura M et al. Numbers, densities, and colocalization of AMPA- and NMDA-type glutamate receptors at individual synapses in the superficial spinal dorsal horn of rats. J Neurosci [Internet]. 2008 [cited 2022 Sep 26];28:9692–701. https://pubmed.ncbi.nlm.nih.gov/18815255/

Sanderson TM, Georgiou J, Collingridge GL. Illuminating Relationships Between the Pre- and Post-synapse. Front Neural Circuits [Internet]. 2020 [cited 2024 Mar 15];14. https://pubmed.ncbi.nlm.nih.gov/32308573/

Llorens-Martín M, Blazquez-Llorca L, Benavides-Piccione R, Rabano A, Hernandez F, Avila J, et al. Selective alterations of neurons and circuits related to early memory loss in Alzheimer’s disease. Front Neuroanat. 2014;8:1–12.

Google Scholar 

Fouquet M, Desgranges B, La Joie R, Rivière D, Mangin JF, Landeau B et al. Role of hippocampal CA1 atrophy in memory encoding deficits in amnestic Mild Cognitive Impairment. Neuroimage [Internet]. 2012 [cited 2024 Mar 15];59:3309–15. https://pubmed.ncbi.nlm.nih.gov/22119654/

Verret L, Mann EO, Hang GB, Barth AMI, Cobos I, Ho K et al. Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell [Internet]. 2012 [cited 2024 Mar 15];149:708–21. https://pubmed.ncbi.nlm.nih.gov/22541439/

Hascup KN, Findley CA, Sime LN, Hascup ER. Hippocampal alterations in glutamatergic signaling during amyloid progression in AβPP/PS1 mice. Sci Rep [Internet]. 2020 [cited 2024 Mar 15];10. https://pubmed.ncbi.nlm.nih.gov/32879385/

Huijbers W, Mormino EC, Schultz AP, Wigman S, Ward AM, Larvie M et al. Amyloid-β deposition in mild cognitive impairment is associated with increased hippocampal activity, atrophy and clinical progression. Brain [Internet]. 2015 [cited 2024 Mar 15];138:1023–35. https://pubmed.ncbi.nlm.nih.gov/25678559/

Martín-Belmonte A, Aguado C, Alfaro-Ruíz R, Itakura M, Moreno-Martínez AE, de la Ossa L et al. Age-Dependent Shift of AMPA Receptors From Synapses to Intracellular Compartments in Alzheimer’s Disease: Immunocytochemical Analysis of the CA1 Hippocampal Region in APP/PS1 Transgenic Mouse Model. Front Aging Neurosci [Internet]. 2020 [cited 2024 Mar 15];12. https://pubmed.ncbi.nlm.nih.gov/33132900/

Rebola N, Carta M, Mulle C. Operation and plasticity of hippocampal CA3 circuits: implications for memory encoding. Nat Rev Neurosci [Internet]. 2017 [cited 2024 Mar 15];18:209–21. https://pubmed.ncbi.nlm.nih.gov/28251990/

Lituma PJ, Kwon HB, Alviña K, Luján R, Castillo PE. Presynaptic NMDA receptors facilitate short-term plasticity and BDNF release at hippocampal mossy fiber synapses. Elife [Internet]. 2021 [cited 2024 Mar 15];10. https://pubmed.ncbi.nlm.nih.gov/34061025/

Kwon HB, Castillo PE. Role of glutamate autoreceptors at hippocampal mossy fiber synapses. Neuron [Internet]. 2008 [cited 2024 Mar 15];60:1082–94. https://pubmed.ncbi.nlm.nih.gov/19109913/

Fukushima F, Nakao K, Shinoe T, Fukaya M, Muramatsu SI, Sakimura K et al. Ablation of NMDA receptors enhances the excitability of hippocampal CA3 neurons. PLoS One [Internet]. 2009 [cited 2024 Mar 15];4. https://pubmed.ncbi.nlm.nih.gov/19142228/

Witton J, Brown JT, Jones MW, Randall AD. Altered synaptic plasticity in the mossy fibre pathway of transgenic mice expressing mutant amyloid precursor protein. Mol Brain [Internet]. 2010 [cited 2024 Mar 15];3:1–7. https://molecularbrain.biomedcentral.com/articles/https://doi.org/10.1186/1756-6606-3-32

Rolls ET. The mechanisms for pattern completion and pattern separation in the hippocampus. Front Syst Neurosci [Internet]. 2013 [cited 2024 Mar 15];7. https://pubmed.ncbi.nlm.nih.gov/24198767/

Jonas P, Lisman J. Structure, function, and plasticity of hippocampal dentate gyrus microcircuits. Front Neural Circuits [Internet]. 2014 [cited 2024 Mar 15];8. https://pubmed.ncbi.nlm.nih.gov/25309334/

Förster E, Zhao S, Frotscher M. Laminating the hippocampus. Nat Rev Neurosci [Internet]. 2006 [cited 2024 Mar 15];7:259–67. https://pubmed.ncbi.nlm.nih.gov/16543914/

Scheff SW, Price DA, Schmitt FA, Mufson EJ. Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging. 2006;27:1372–84.

Article 

留言 (0)

沒有登入
gif