Next-generation BCMA-targeted chimeric antigen receptor CARTemis-1: the impact of manufacturing procedure on CAR T-cell features

N.C. Munshi, L.D. Anderson, N. Shah, D. Madduri, J. Berdeja, S. Lonial et al., Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N. Engl. J. Med. 384(8), 705–716 (2021)

Article  CAS  PubMed  Google Scholar 

T. Martin, S.Z. Usmani, J.G. Berdeja, M. Agha, A.D. Cohen, P. Hari et al., Ciltacabtagene autoleucel, an anti–B-cell maturation antigen chimeric antigen receptor T-cell therapy, for relapsed/refractory multiple myeloma: CARTITUDE-1 2-year follow-up. J. Clin. Oncol. (2022)

J.G. Berdeja, D. Madduri, S.Z. Usmani, A. Jakubowiak, M. Agha, A.D. Cohen et al., Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study. Lancet. 398(10297), 314–324 (2021)

Article  CAS  PubMed  Google Scholar 

B. Dhakal, K. Yong, S.J. Harrison, M.V. Mateos, P. van de Moreau et al., First phase 3 results from CARTITUDE-4: cilta-cel versus standard of care (PVd or DPd) in lenalidomide-refractory multiple myeloma. 41(17_suppl), LBA106–LBA106 (2023). https://doi.org/10.1200/JCO.2023.41.17_suppl.LBA106

J. San-Miguel, B. Dhakal, K. Yong, A. Spencer, S. Anguille, M.V. Mateos et al., Cilta-cel or standard care in lenalidomide-refractory multiple myeloma. N. Engl. J. Med. (2023). https://doi.org/10.1056/NEJMoa2303379

K. Rejeski, M.D. Jain, E.L. Smith, Mechanisms of resistance and treatment of relapse after CAR T-cell therapy for large B-cell lymphoma and multiple myeloma. (2023). https://doi.org/10.1016/j.jtct.2023.04.007

L.D. Anderson, B. Dhakal, T. Jain, O.O. Oluwole, G.L. Shah, S. Sidana et al., Chimeric antigen receptor T cell therapy for myeloma: where are we now and what is needed to move chimeric antigen receptor T cells forward to earlier lines of therapy? Expert panel opinion from the American Society for Transplantation and Cellular Therapy. Transpl. Cell. Ther. (2023)

E. García-Guerrero, B. Sierro-Martínez, J.A. Pérez-Simón, Overcoming chimeric antigen receptor (CAR) modified T-cell therapy limitations in multiple myeloma. Front. Immunol. 11 (2020). https://pubmed.ncbi.nlm.nih.gov/32582204/

S. Hipp, Y.T. Tai, D. Blanset, P. Deegen, J. Wahl, O. Thomas et al., A novel BCMA/CD3 bispecific T-cell engager for the treatment of multiple myeloma induces selective lysis in vitro and in vivo. Leukemia. 31(8), 1743–1751 (2017). https://pubmed.ncbi.nlm.nih.gov/28025583/

C.E. Brown, C.L. Wright, A. Naranjo, R.P. Vishwanath, W.C. Chang, S. Olivares et al., Biophotonic cytotoxicity assay for high-throughput screening of cytolytic killing. J. Immunol. Methods. 297(1–2), 39–52 (2005)

Article  CAS  PubMed  Google Scholar 

R.D. Guest, R.E. Hawkins, N. Kirillova, E.J. Cheadle, J. Arnold, A. O’Neill et al., The role of extracellular spacer regions in the optimal design of chimeric immune receptors: evaluation of four different scFvs and antigens. J. Immunother. 28(3), 203–211 (2005). https://journals.lww.com/immunotherapy-journal/fulltext/2005/05000/the_role_of_extracellular_spacer_regions_in_the.5.aspx

M. Hudecek, D. Sommermeyer, P.L. Kosasih, A. Silva-Benedict, L. Liu, C. Rader et al., The nonsignaling extracellular spacer domain of chimeric antigen receptors is decisive for in vivo antitumor activity. Cancer Immunol. Res. 3(2), 125–135 (2015). https://aacrjournals.org/cancerimmunolres/article/3/2/125/467742/The-Nonsignaling-Extracellular-Spacer-Domain-of

S.E. James, P.D. Greenberg, M.C. Jensen, Y. Lin, J. Wang, B.G. Till et al., Antigen sensitivity of CD22-specific chimeric TCR is modulated by target epitope distance from the cell membrane. J. Immunol. 180(10), 7028–7038 (2008). https://doi.org/10.4049/jimmunol.180.10.7028

S. Guedan, H. Calderon, A.D. Posey, M.V. Maus, Engineering and design of chimeric antigen receptors. Mol. Ther. Methods Clin. Dev. 12, 145–156 (2019). http://www.cell.com/article/S2329050118301335/fulltext

G. Dotti, S. Gottschalk, B. Savoldo, M.K. Brenner, J. Carl, Design and development of therapies using chimeric antigen receptor-expressing T cells. Immunol. Rev. 257 (2013). www.immunologicalreviews.com

N. Shah, A. Chari, E. Scott, K. Mezzi, S.Z. Usmani, B-cell maturation antigen (BCMA) in multiple myeloma: rationale for targeting and current therapeutic approaches. Leukemia. 34(4), 985–1005 (2020). https://www.nature.com/articles/s41375-020-0734-z

R.O. Carpenter, M.O. Evbuomwan, S. Pittaluga, J.J. Rose, M. Raffeld, S. Yang et al., B-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myeloma. Clin. Cancer Res. 19(8), 2048–2060 (2013). https://aacrjournals.org/clincancerres/article/19/8/2048/208469/B-cell-Maturation-Antigen-Is-a-Promising-Target

L. Perez-Amill, G. Suñe, A. Antoñana-Vildosola, M. Castella, A. Najjar, J. Bonet et al., Preclinical development of a humanized chimeric antigen receptor against B-cell maturation antigen for multiple myeloma. Haematologica. 106(1), 173 (2021). /pmc/articles/PMC7776337/.

S.A. Laurent, F.S. Hoffmann, P.H. Kuhn, Q. Cheng, Y. Chu, M. Schmidt-Supprian et al., γ-secretase directly sheds the survival receptor BCMA from plasma cells. Nat. Commun. (2015)

M.J. Pont, T. Hill, G.O. Cole, J.J. Abbott, J. Kelliher, A.I. Salter et al., γ-Secretase inhibition increases efficacy of BCMA-specific chimeric antigen receptor T cells in multiple myeloma. Blood. 134(19), 1585–1597 (2019). https://ashpublications.org/blood/article/134/19/1585/374996/Secretase-inhibition-increases-efficacy-of-BCMA

E. Sanchez, A. Gillespie, G. Tang, M. Ferros, N.M. Harutyunyan, S. Vardanyan et al., Soluble B-Cell maturation antigen mediates tumor-induced immune deficiency in multiple myeloma. Clin. Cancer Res. 22(13), 3383–3397 (2016). https://pubmed.ncbi.nlm.nih.gov/26960399/

H. Chen, M. Li, N. Xu, N. Ng, E. Sanchez, C.M. Soof et al., Serum B-cell maturation antigen (BCMA) reduces binding of anti-BCMA antibody to multiple myeloma cells. Leuk Res. 81, 62–66 (2019). https://pubmed.ncbi.nlm.nih.gov/31035033/

Y. Shen, J. Liu, B. Wang, Y. Zhang, Y. Xu, X. Wang et al., Serum soluble BCMA can be used to monitor relapse of multiple myeloma patients after chimeric antigen receptor T-cell immunotherapy. Curr. Res. Transl Med. 71(2), 103378 (2023)

CAS  PubMed  Google Scholar 

K. Seipel, N. Porret, G. Wiedemann, B. Jeker, V.U. Bacher, T. Pabst, sBCMA plasma level dynamics and anti-BCMA CAR-T-cell treatment in relapsed multiple myeloma. Curr. Issues Mol. Biol. 44(4), 1463 (2022). /pmc/articles/PMC9164019/.

A.J. Cowan, M.J. Pont, B.D. Sather, C.J. Turtle, B.G. Till, E.N. Libby et al., γ-Secretase inhibitor in combination with BCMA chimeric antigen receptor T-cell immunotherapy for individuals with relapsed or refractory multiple myeloma: a phase 1, first-in-human trial. Lancet Oncol. 24(7), 811–822 (2023)

Article  CAS  PubMed  PubMed Central  Google Scholar 

H. Lee, M. Durante, S. Ahn, N. Leblay, M. Poorebrahim, R. Maity et al., The impact of soluble BCMA and BCMA gain on anti-BCMA immunotherapies in multiple myeloma. Blood [Internet]. 142(Suppl. 1), 4688–4688 (2023). https://doi.org/10.1182/blood-2023-188080

S.G. Hymowitz, D.R. Patel, H.J.A. Wallweber, S. Runyon, M. Yan, J.P. Yin et al., Structures of APRIL-receptor complexes: like BCMA, TACI employs only a single cysteine-rich domain for high affinity ligand binding. J. Biol. Chem. 280(8), 7218–7227 (2005). https://pubmed.ncbi.nlm.nih.gov/15542592/

Y. Liu, X. Hong, J. Kappler, L. Jiang, R. Zhang, L. Xu et al., Ligand-receptor binding revealed by the TNF family member TALL-1. Nature. 423(6935), 49–56 (2003). https://pubmed.ncbi.nlm.nih.gov/12721620/

N. Watanabe, F. Mo, M.K. McKenna, Impact of manufacturing procedures on CAR T cell functionality. Front. Immunol. 13 (2022). https://pubmed.ncbi.nlm.nih.gov/35493513/

Y. Rochman, R. Spolski, W.J. Leonard, New insights into the regulation of T cells by γc family cytokines. Nat. Rev. Immunol. 9, 480–490 (2009)

Article  CAS  PubMed  PubMed Central  Google Scholar 

A. Ma, R. Koka, P. Burkett, Diverse functions of IL-2, IL-15, and IL-7 in lymphoid homeostasis. Ann. Rev. Immunol. 24, 657–679 (2006)

J.M. Hoffmann, M.L. Schubert, L. Wang, A. Hückelhoven, L. Sellner, S. Stock et al., Differences in expansion potential of naive chimeric antigen receptor T cells from healthy donors and untreated chronic lymphocytic leukemia patients. Front Immunol. 8(Jan), 315028 (2018)

Y. Xu, M. Zhang, C.A. Ramos, A. Durett, E. Liu, O. Dakhova et al., Closely related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15. Blood. 123(24), 3750–3759 (2014)

Article  CAS  PubMed  PubMed Central  Google Scholar 

M.J. Lenardo, lnterleukin-2 programs mouse αβ T lymphocytes for apoptosis. Nature. 353(6347), 858–861 (1991). https://www.nature.com/articles/353858a0

Z. Good, J.Y. Spiegel, B. Sahaf, M.B. Malipatlolla, Z.J. Ehlinger, S. Kurra et al., Post-infusion CAR TReg cells identify patients resistant to CD19-CAR therapy. Nat. Med. 28(9), 1860–1871 (2022). https://doi.org/10.1038/s41591-022-01960-7

N.J. Haradhvala, M.B. Leick, K. Maurer, S.H. Gohil, R.C. Larson, N. Yao et al., Distinct cellular dynamics associated with response to CAR-T therapy for refractory B cell lymphoma. Nat. Med. 28(9), 1848–1859 (2022). https://www.nature.com/articles/s41591-022-01959-0

K.S. Schluns, W.C. Kieper, S.C. Jameson, L. Lefrançois, Interleukin-7 mediates the homeostasis of naïve and memory CD8 T cells in vivo. Nat. Immunol. 1(5), 426–432 (2000). https://www.nature.com/articles/ni1100_426

A.W. Goldrath, P.V. Sivakumar, M. Glaccum, M.K. Kennedy, M.J. Bevan, C. Benoist et al., Cytokine requirements for acute and Basal homeostatic proliferation of naive and memory CD8 + T cells. J. Exp. Med. 195(12), 1515–1522 (2002). https://pubmed.ncbi.nlm.nih.gov/12070279/

D.A. RA, W.X.Y.D.W. JR CF, K, et al. IL15 Enhances CAR-T Cell Antitumor Activity by Reducing mTORC1 Activity and Preserving Their Stem Cell Memory Phenotype. Cancer Immunol. Res. 7(5), 759–772 (2019). https://pubmed.ncbi.nlm.nih.gov/30890531/

J. Zhou, L. Jin, F. Wang, Y. Zhang, B. Liu, T. Zhao, Chimeric antigen receptor T (CAR-T) cells expanded with IL-7/IL-15 mediate superior antitumor effects. Protein Cell 10, 764–769 (2019)

H. Imamichi, I. Sereti, H.C. Lane, IL-15 acts as a potent inducer of CD4 + CD25hi cells expressing FOXP3. Eur. J. Immunol. 38(6), 1621–1630 (2008)

Article  CAS  PubMed  PubMed Central  Google Scholar 

T.R. Malek, A. Yu, V. Vincek, P. Scibelli, L. Kong, CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rbeta-deficient mice. Implications for the nonredundant function of IL-2. Immunity. 17(2), 167–178 (2002). https://pubmed.ncbi.nlm.nih.gov/12196288/

A.M. Thornton, E.M. Shevach, CD4 + CD25 + immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med. 188(2), 287–296 (1998). https://pubmed.ncbi.nlm.nih.gov/9670041/

T.R. Malek, A.L. Bayer, Tolerance, not immunity, crucially depends on IL-2. Nat. Rev. Immunol. 4(9), 665–674 (2004). https://www.nature.com/articles/nri1435

S. Ghassemi, S. Nunez-Cruz, R.S. O’Connor, J.A. Fraietta, P.R. Patel, J. Scholler et al., Reducing ex vivo culture improves the antileukemic activity of chimeric antigen receptor (CAR) T cells. Cancer Immunol. Res. 6(9), 1100–1109 (2018). https://aacrjournals.org/cancerimmunolres/article/6/9/1100/468912/Reducing-Ex-Vivo-Culture-Improves-the-Antileukemic. Cited 15 Mar 2023

B. Engels, X. Zhu, J. Yang, A. Price, A. Sohoni, A.M. Stein et al., Preservation of T-Cell stemness with a Novel Expansionless CAR-T Manufacturing process, which reduces Manufacturing Time to Less Than two days, drives enhanced CAR-T cell efficacy. Blood. 138(Suppl. 1), 2848–2848 (6377)

Article  Google Scholar 

P.A. Lu, Feasibility, and Safety Study of a Novel CD19-Directed Synthetic T-Cell Receptor and Antigen Receptor (STAR) T-Cell Therapy for Refractory and Relapsed (R/R) B Cell Acute Lymphoblastic Leukemia (B-ALL) (ASH, 2020)

A. Schietinger, M. Philip, V.E. Krisnawan, E.Y. Chiu, J.J. Delrow, R.S. Basom et al., Tumor-specific T Cell dysfunction is a dynamic antigen-driven differentiation program initiated early during tumorigenesis. Immunity. 45(2), 389–401 (2016). https://pubmed.ncbi.nlm.nih.gov/27521269/

J. Yang, J. He, X. Zhang, J. Li, Z. Wang, Y. Zhang et al., Next-day manufacture of a novel anti-CD19 CAR-T therapy for B-cell acute lymphoblastic leukemia: first-in-human clinical study. https://doi.org/10.1038/s41408-022-00694-6

J.A. Fraietta, S.F. Lacey, E.J. Orlando, I. Pruteanu-Malinici, M. Gohil, S. Lundh et al., Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat. Med. 24(5), 563–571 (2018). https://doi.org/10.1038/s41591-018-0010-1

Q. Deng, G. Han, N. Puebla-Osorio, M.C.J. Ma, P. Strati, B. Chasen et al., Characteristics of anti-CD19 CAR T cell infusion products associated with efficacy and toxicity in patients with large B cell lymphomas. Nat. Med. 26(12), 1878–1887 (2020)

Article  CAS  PubMed  PubMed Central  Google Scholar 

O.C. Finney, H. Brakke, S. Rawlings-Rhea, R. Hicks, D. Doolittle, M. Lopez et al., CD19 CAR T cell product and disease attributes predict leukemia remission durability. J. Clin. Invest. 129(5), 2123–2132 (2019)

Article  PubMed  PubMed Central  Google Scholar 

Y. Lin, N.S. Raje, J.G. Berdeja, D.S. Siegel, S. Jagannath, D. Madduri et al., Idecabtagene vicleucel for relapsed and refractory multiple myeloma: post hoc 18-month follow-up of a phase 1 trial. Nat. Med. 29(9), 2286–2294 (2023)

Article  CAS  PubMed  PubMed Central  Google Scholar 

S. Rafiq, C.S. Hackett, R.J. Brentjens, Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat. Rev. Clin. Oncol. 17(3), 147–167 (2019). https://www.nature.com/articles/s41571-019-0297-y

J.H. Park, I. Rivière, M. Gonen, X. Wang, B. Sénéchal, K.J. Curran et al., Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N. Engl. J. Med. 378(5), 449–459 (2018). https://doi.org/10.1056/nejmoa1709919. https://www.nejm.org/doi/full/

N. Singh, J. Perazzelli, S.A. Grupp, D.M. Barrett, Early memory phenotypes drive T cell proliferation in patients with pediatric malignancies. Sci. Transl. Med. 8(320) (2016). https://doi.org/10.1126/scitranslmed.aad5222. https://www.science.org/doi/

N. Salam, S. Rane, R. Das, M. Faulkner, R. Gund, U. Kandpal et al., T cell ageing: Effects of age on development, survival & function. Indian J. Med. Res. 138(5), 595 (2013). /pmc/articles/PMC3928693/.

S. Palmer, L. Albergante, C.C. Blackburn, T.J. Newman, Thymic involution and rising disease incidence with age. Proc. Natl. Acad. Sci. U. S. A. 115(8), 1883–1888 (2018). https://doi.org/10.1073/pnas.1714478115. https://www.pnas.org/doi/abs/

J.A. Fraietta, K.A. Beckwith, P.R. Patel, M. Ruella, Z. Zheng, D.M. Barrett et al., Ibrutinib enhances chimeric antigen receptor T-cell engraftment and efficacy in leukemia. Blood. 127(9), 1117–1127 (2016). https://ashpublications.org/blood/article/127/9/1117/126450/Ibrutinib-enhances-chimeric-antigen-receptor-T

L. Hammons, S. Haider, M.C. Pasquini, S. Chhabra, S. Radhakrishnan, A.E. Zamora et al., Chimeric antigen receptor-T (CAR-T) cell therapy targeting BCMA in patients with prior allogeneic transplantation (allo-HCT) in relapsed and/or refractory multiple myeloma (RRMM). Blood. 140(Suppl. 1), 7215–7216 (2022). https://ashpublications.org/blood/article/140/Supplement1/7215/493112/Chimeric-Antigen-Receptor-T-CAR-T-Cell-Therapy

J.N. Kochenderfer, M.E. Dudley, R.O. Carpenter, S.H. Kassim, J.J. Rose, W.G. Telford et al., Donor-derived CD19-targeted T cells cause regression of malignancy persisting after allogeneic hematopoietic stem cell transplantation. Blood. 122(25), 4129–4139 (2013). https://ashpublications.org/blood/article/122/25/4129/32058/Donor-derived-CD19-targeted-T-cells-cause

F. Lutfi, N. Holtzman, J. Siglin, A. Bukhari, M. Mustafa Ali, D. Kim et al., Chimeric antigen receptor T-cell therapy after allogeneic stem cell transplant for relapsed/refractory large B-cell lymphoma. Br. J. Haematol. 192(1), 212–216 (2021)

Article  CAS  PubMed  Google Scholar 

J. Siglin, F. Lutfi, A. Bukhari, N.G. Holtzman, D.W. Kim, M.M. Ali et al., Pseudo-allogeneic CAR-T therapy after allogeneic stem cell transplantation in relapsed/refractory B-cell NHL. Blood. 136(Suppl. 1), 22–23 (2020). https://ashpublications.org/blood/article/136/Supplement1/22/471006/Pseudo-Allogeneic-CAR-T-Therapy-after-Allogeneic

R. Nelson, FDA investigating safety risks in CAR T-cell recipients. Lancet. 402(10418), 2181 (2023). http://www.thelancet.com/article/S0140673623027472/fulltext

B.L. Levine, M.C. Pasquini, J.E. Connolly, D.L. Porter, M.P. Gustafson, J.J. Boelens et al., Unanswered Questions Following Reports of Secondary Malignancies after CAR-T cell Therapy. Nat. Med. Nat. Res. (2024)

留言 (0)

沒有登入
gif