Metformin as a Modulator of Autophagy and Hypoxia Responses in the Enhancement of Wound Healing in Diabetic Rats

Pereira Beserra, F., Fernando Sérgio Gushiken, L., Fernanda Hussni, M., and C. Helena Pellizzon. 2019. Regulatory mechanisms and chemical signaling of mediators involved in the inflammatory phase of cutaneous wound healing. IntechOpen. https://doi.org/10.5772/intechopen.81731.

Dasari, N., A. Jiang, A. Skochdopole, J. Chung, E.M. Reece, J. Vorstenbosch, and S. Winocour. 2021. Updates in diabetic wound healing, inflammation, and scarring. Seminars in Plastic Surgery 35 (3): 153–158. https://doi.org/10.1055/s-0041-1731460.

Article  PubMed  PubMed Central  Google Scholar 

Bosco, M.C., M. Puppo, F. Blengio, T. Fraone, P. Cappello, M. Giovarelli, and L. Varesio. 2008. Monocytes and dendritic cells in a hypoxic environment: Spotlights on chemotaxis and migration. Immunobiology 213 (9–10): 733–749. https://doi.org/10.1016/j.imbio.2008.07.031.

Article  CAS  PubMed  Google Scholar 

Hong, W.X., M.S. Hu, M. Esquivel, G.Y. Liang, R.C. Rennert, A. McArdle, K.J. Paik, D. Duscher, G.C. Gurtner, H.P. Lorenz, and M.T. Longaker. 2014. The role of hypoxia-inducible factor in wound healing. Advances in Wound Care 3 (5): 390–399. https://doi.org/10.1089/wound.2013.0520.

Article  PubMed  PubMed Central  Google Scholar 

Falanga, V., and R.S. Kirsner. 1993. Low oxygen stimulates proliferation of fibroblasts seeded as single cells. Journal of Cellular Physiology 154 (3): 506–510. https://doi.org/10.1002/jcp.1041540308.

Article  CAS  PubMed  Google Scholar 

Zaarour, R.F., B. Azakir, E.Y. Hajam, H. Nawafleh, N.A. Zeinelabdin, A.S.T. Engelsen, J. Thiery, C. Jamora, and S. Chouaib. 2021. Role of hypoxia-mediated autophagy in tumor cell death and survival. Cancers 13 (3): 533. https://doi.org/10.3390/cancers13030533.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dang, S., H. Xu, C. Xu, W. Cai, Q. Li, Y. Cheng, M. Jin, R.X. Wang, Y. Peng, Y. Zhang, C. Wu, X. He, B. Wan, and Y. Zhang. 2014. Autophagy regulates the therapeutic potential of mesenchymal stem cells in experimental autoimmune encephalomyelitis. Autophagy 10 (7): 1301–1315. https://doi.org/10.4161/auto.28771.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ren, H., F. Zhao, Q. Zhang, X. Huang, and Z. Wang. 2022. Autophagy and skin wound healing. Burns and Trauma 10: tkac003. https://doi.org/10.1093/burnst/tkac003.

Article  PubMed  PubMed Central  Google Scholar 

Lu, G., Y. Wang, Y. Shi, Z. Zhang, C. Huang, W. He, C. Wang, and H.M. Shen. 2022. Autophagy in health and disease: From molecular mechanisms to therapeutic target. MedComm 3 (3): e150. https://doi.org/10.1002/mco2.150.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vucicevic, L., M. Misirkic-Marjanovic, V. Paunovic, T. Kravic-Stevovic, T. Martinovic, D. Ciric, N. Maric, S. Petricevic, L. Harhaji-Trajkovic, V. Bumbasirevic, and V. Trajkovic. 2014. Autophagy inhibition uncovers the neurotoxic action of the antipsychotic drug olanzapine. Autophagy 10 (12): 2362–2378. https://doi.org/10.4161/15548627.2014.984270.

Article  CAS  PubMed  Google Scholar 

Kim, J., M. Kundu, B. Viollet, and K.L. Guan. 2011. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nature Cell Biology 13 (2): 132–141. https://doi.org/10.1038/ncb2152.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peng, X., C. Wei, H.Z. Li, H.X. Li, S.Z. Bai, L.N. Wang, Y.H. Xi, J. Yan, and C.Q. Xu. 2019. NPS2390, a selective calcium-sensing receptor antagonist controls the phenotypic modulation of hypoxic human pulmonary arterial smooth muscle cells by regulating autophagy. Journal of Translational Internal Medicine 7 (2): 59–68. https://doi.org/10.2478/jtim-2019-0013.

Article  PubMed  PubMed Central  Google Scholar 

Hardie, D.G. 2007. AMP-activated/SNF1 protein kinases: Conserved guardians of cellular energy. Nature Reviews Molecular Cell Biology 8 (10): 774–785.

Article  CAS  PubMed  Google Scholar 

Matsumoto, T., E. Noguchi, K. Ishida, T. Kobayashi, N. Yamada, and K. Kamata. 2008. Metformin normalizes endothelial function by suppressing vasoconstrictor prostanoids in mesenteric arteries from OLETF rats, a model of type 2 diabetes. American Journal of Physiology Heart and Circulatory Physiology 295 (3): H1165–H1176. https://doi.org/10.1152/ajpheart.00486.2008.

Article  CAS  PubMed  Google Scholar 

Ochoa-Gonzalez, F., A.R. Cervantes-Villagrana, J.C. Fernandez-Ruiz, H.S. Nava-Ramirez, A.C. Hernandez-Correa, J.A. Enciso-Moreno, and J.E. Castañeda-Delgado. 2016. Correction: metformin induces cell cycle arrest, reduced proliferation, wound healing impairment in vivo and is associated to clinical outcomes in diabetic foot ulcer patients. PLoS One 11 (7): e0159468. https://doi.org/10.1371/journal.pone.0159468.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baraka, A.M., and M.M. Deif. 2011. Role of activation of 5’-adenosine monophosphate-activated protein kinase in gastric ulcer healing in diabetic rats. Pharmacology 88 (5–6): 275–283. https://doi.org/10.1159/000331879.

Article  CAS  PubMed  Google Scholar 

Tombulturk, F.K., Z.G. Todurga-Seven, O. Huseyinbas, S. Ozyazgan, T. Ulutin, and G. Kanigur-Sultuybek. 2022. Topical application of metformin accelerates cutaneous wound healing in streptozotocin-induced diabetic rats. Molecular Biology Reports 49 (1): 73–83. https://doi.org/10.1007/s11033-021-06843-7.

Article  CAS  PubMed  Google Scholar 

Botusan, I.R., V.G. Sunkari, O. Savu, A.I. Catrina, J. Grünler, S. Lindberg, T. Pereira, S. Ylä-Herttuala, L. Poellinger, K. Brismar, and S.B. Catrina. 2008. Stabilization of HIF-1alpha is critical to improve wound healing in diabetic mice. Proceedings of the National Academy of Sciences of the United States of America 105 (49): 19426–19431. https://doi.org/10.1073/pnas.0805230105.

Article  PubMed  PubMed Central  Google Scholar 

Elson, D.A., H.E. Ryan, J.W. Snow, R. Johnson, and J.M. Arbeit. 2000. Coordinate up-regulation of hypoxia inducible factor (HIF)-1alpha and HIF-1 target genes during multi-stage epidermal carcinogenesis and wound healing. Cancer Research 60 (21): 6189–6195.

CAS  PubMed  Google Scholar 

Kimura, K., M. Iwano, D.F. Higgins, Y. Yamaguchi, K. Nakatani, K. Harada, A. Kubo, Y. Akai, E.B. Rankin, E.G. Neilson, V.H. Haase, and Y. Saito. 2008. Stable expression of HIF-1alpha in tubular epithelial cells promotes interstitial fibrosis. American Journal of Physiology Renal Physiology 295 (4): F1023–F1029. https://doi.org/10.1152/ajprenal.90209.2008.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carota, I.A., Y. Kenig-Kozlovsky, T. Onay, R. Scott, B.R. Thomson, T. Souma, C.S. Bartlett, Y. Li, D. Procissi, V. Ramirez, S. Yamaguchi, A. Tarjus, C.E. Tanna, C. Li, V. Eremina, D. Vestweber, S.S. Oladipupo, M.D. Breyer, and S.E. Quaggin. 2019. Targeting VE-PTP phosphatase protects the kidney from diabetic injury. The Journal of Experimental Medicine 216 (4): 936–949. https://doi.org/10.1084/jem.20180009.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao, M., S. Wang, A. Zuo, J. Zhang, W. Wen, W. Jiang, H. Chen, D. Liang, J. Sun, and M. Wang. 2021. HIF-1α/JMJD1A signaling regulates inflammation and oxidative stress following hyperglycemia and hypoxia-induced vascular cell injury. Cellular and Molecular Biology Letters 26 (1): 40. https://doi.org/10.1186/s11658-021-00283-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Catrina, S.B., K. Okamoto, T. Pereira, K. Brismar, and L. Poellinger. 2004. Hyperglycemia regulates hypoxia-inducible factor-1alpha protein stability and function. Diabetes 53 (12): 3226–3232. https://doi.org/10.2337/diabetes.53.12.3226.

Article  CAS  PubMed  Google Scholar 

Gao, W., G. Ferguson, P. Connell, T. Walshe, R. Murphy, Y.A. Birney, C. O’Brien, and P.A. Cahill. 2007. High glucose concentrations alter hypoxia-induced control of vascular smooth muscle cell growth via a HIF-1alpha-dependent pathway. Journal of Molecular and Cellular Cardiology 42 (3): 609–619. https://doi.org/10.1016/j.yjmcc.2006.12.006.

Article  CAS  PubMed  Google Scholar 

Michaels, J., 5th., S.S. Churgin, K.M. Blechman, M.R. Greives, S. Aarabi, R.D. Galiano, and G.C. Gurtner. 2007. db/db mice exhibit severe wound-healing impairments compared with other murine diabetic strains in a silicone-splinted excisional wound model. Wound Repair and Regeneration: Official Publication of the Wound Healing Society and the European Tissue Repair Society 15 (5): 665–670. https://doi.org/10.1111/j.1524-475X.2007.00273.x.

Article  PubMed  Google Scholar 

Mehrabani, M., M. Najafi, T. Kamarul, K. Mansouri, M. Iranpour, M.H. Nematollahi, M. Ghazi-Khansari, and A.M. Sharifi. 2015. Deferoxamine preconditioning to restore impaired HIF-1α-mediated angiogenic mechanisms in adipose-derived stem cells from STZ-induced type 1 diabetic rats. Cell Proliferation 48 (5): 532–549. https://doi.org/10.1111/cpr

留言 (0)

沒有登入
gif