Evaluation of (S)-T1 and (S)-T2 ligands targeting α3β4 nAChR as potential nicotine addiction pharmacotherapy

Bagdas D, Alkhlaif Y, Jackson A, Carroll FI, Ditre JW, Damaj MI (2018) New insights on the effects of varenicline on nicotine reward, withdrawal and hyperalgesia in mice. Neuropharmacology 138:72–79. https://doi.org/10.1016/j.neuropharm.2018.05.025

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bardo MT, Bevins RA (2000) Conditioned place preference: what does it add to our preclinical understanding of drug reward? Psychopharmacology 153:31–43. https://doi.org/10.1007/s002130000569

Article  CAS  PubMed  Google Scholar 

Becker JB, Koob GF (2016) Sex differences in animal models: focus on addiction. Pharmacol Rev 68:242–263. https://doi.org/10.1124/pr.115.011163

Article  CAS  PubMed  PubMed Central  Google Scholar 

Benli AR, Erturhan S, Oruc MA, Kalpakci P, Sunay D, Demirel Y (2017) A comparison of the efficacy of varenicline and bupropion and an evaluation of the effect of the medications in the context of the smoking cessation programme. Tob Induc Dis 15:10. https://doi.org/10.1186/s12971-017-0116-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berrettini W, Yuan X, Tozzi F, Song K, Francks C, Chilcoat H, Waterworth D, Muglia P, Mooser V (2008) α-5/α-3 nicotinic receptor subunit alleles increase risk for heavy smoking. Mol Psychiatry 13:368–373. https://doi.org/10.1038/sj.mp.4002154

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bierut LJ, Stitzel JA, Wang JC et al (2008) Variants in nicotinic receptors and risk for nicotine dependence. Am J Psychiatry 165:1163–1171. https://doi.org/10.1176/appi.ajp.2008.07111711

Article  PubMed  PubMed Central  Google Scholar 

Bourdy R, Sánchez-Catalán MJ, Kaufling J et al (2014) Control of the nigrostriatal dopamine neuron activity and motor function by the tail of the ventral tegmental area. Neuropsychopharmacology 39:2788–2798. https://doi.org/10.1038/npp.2014.129

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cunningham CL, Gremel CM, Groblewski PA (2006) Drug-induced conditioned place preference and aversion in mice. Nat Protoc 1:1662–1670. https://doi.org/10.1038/nprot.2006.279

Article  CAS  PubMed  Google Scholar 

D'Souza MS, Markou A (2011) Neuronal mechanisms underlying development of nicotine dependence: implications for novel smoking-cessation treatments. Addict Sci Clin Pract 6:4–16. http://www.ncbi.nlm.nih.gov/pmc/articles/pmc3188825. Accessed 05 Jan 2023

Dani JA, Heinemann S (1996) Molecular and cellular aspects of nicotine abuse. Neuron 16:905–908. https://doi.org/10.1016/s0896-6273(00)80112-9

Article  CAS  PubMed  Google Scholar 

Eggan BL, McCallum SE (2016) 18-Methoxycoronaridine acts in the medial habenula to attenuate behavioral and neurochemical sensitization to nicotine. Behav Brain Res 307:186–193. https://doi.org/10.1016/j.bbr.2016.04.008

Article  CAS  PubMed  Google Scholar 

Elayouby KS, Ishikawa M, Dukes AJ, Smith ACW, Lu Q, Fowler CD, Kenny PJ (2021) α3* Nicotinic acetylcholine receptors in the habenula-interpeduncular nucleus circuit regulate nicotine intake. J Neurosci 41:1779–1787. https://doi.org/10.1523/jneurosci.0127-19.2020

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fowler CD, Arends MA, Kenny PJ (2008) Subtypes of nicotinic acetylcholine receptors in nicotine reward, dependence, and withdrawal: evidence from genetically modified mice. Behav Pharmacol 19:461–484. https://doi.org/10.1097/fbp.0b013e32830c360e

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fowler CD, Lu Q, Johnson PM, Marks MJ, Kenny PJ (2011) Habenular α5 nicotinic receptor subunit signalling controls nicotine intake. Nature 471:597–601. https://doi.org/10.1038/nature09797

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fu Y, Matta SG, Gao W, Brower VG, Sharp BM (2000) Systemic nicotine stimulates dopamine release in nucleus accumbens: re-evaluation of the role of N-methyl-D-aspartate receptors in the ventral tegmental area. J Pharmacol Exp Ther 294:458–465. https://pubmed.ncbi.nlm.nih.gov/10900219. Accessed 13 Aug 2022

Glick S, Sell E, Maisonneuve I (2008) Brain regions mediating α3β4 nicotinic antagonist effects of 18-MC on methamphetamine and sucrose self-administration. Eur J Pharmacol 599:91–95. https://doi.org/10.1016/j.ejphar.2008.09.038

Article  CAS  PubMed  PubMed Central  Google Scholar 

Glick SD, Sell EM, McCallum SE, Maisonneuve IM (2011) Brain regions mediating alpha3beta4 nicotinic antagonist effects of 18-MC on nicotine self-administration. Eur J Pharmacol 669:71–75. https://doi.org/10.1016/j.ejphar.2011.08.001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gotti C, Clementi F, Fornari A et al (2009) Structural and functional diversity of native brain neuronal nicotinic receptors. Biochem Pharmacol 78:703–711. https://doi.org/10.1016/j.bcp.2009.05.024

Article  CAS  PubMed  Google Scholar 

Guest PC (2019) Pre-clinical models: Techniques and protocols. Springer, New York

Book  Google Scholar 

Guillem K, Vouillac AMR, Parsons LH, Koop GF, Cador M, Stinus L (2006) Monoamine oxidase A rather than monoamine oxidase B inhibition increases nicotine reinforcement in rats. Eur J Neurosci 24:3532–3540. https://doi.org/10.1111/j.1460-9568.2006.05217.x

Article  PubMed  Google Scholar 

Isiegas C, Mague SD, Blendy JA (2009) Sex differences in response to nicotine in C57Bl/6:129SvEv mice. Nicotine Tob Res 11:851–858. https://doi.org/10.1093/ntr/ntp076

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kenny PJ, Markou A (2001) Neurobiology of the nicotine withdrawal syndrome. Pharmacol Biochem Behav 70:531–549. https://doi.org/10.1016/s0091-3057(01)00651-7

Article  CAS  PubMed  Google Scholar 

Khroyan TV, Yasuda D, Toll L, Pogar WE, Zeveri NT (2015) High affinity α3β4 nicotinic acetylcholine receptor ligands AT-1001 and AT-1012 attenuate cocaine-induced conditioned place preference and behavioral sensitization in mice. Biochem Pharmacol 97:531–541. https://doi.org/10.1016/j.bcp.2015.08.083

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kleijn J, Folgering JHA, van der Hart MCG, Rollema H, Cremers TIFH, Westerink BHC (2011) Direct effect of nicotine on mesolimbic dopamine release in rat nucleus accumbens shell. Neurosci Lett 493:55–58. https://doi.org/10.1016/j.neulet.2011.02.035

Article  CAS  PubMed  Google Scholar 

Lee HW, Yang SH, Kim JY, Kim H (2019) The role of the medial habenula cholinergic system in addiction and emotion-associated behaviors. Front Psychiatry 10:100. https://doi.org/10.3389/fpsyt.2019.00100

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li X, You S, Xiong J, Qiao Y, Yu J, Zhangsun D, Luo S (2020) α-Conotoxin TxID and [S9K]TxID, α3β4 nAChR antagonists, attenuate expression and reinstatement of nicotine-induced conditioned place preference in mice. Mar Drug 18:646. https://doi.org/10.3390/md18120646

Article  CAS  Google Scholar 

Markou A (2008) Neurobiology of nicotine dependence. Philos Trans R Soc Lond B Biol Sci 363:3159–3168. https://doi.org/10.1098/rstb.2008.0095

Article  CAS  PubMed  PubMed Central  Google Scholar 

McCallum SE, Cowe MA, Lewis SW, Glick SD (2012) α3β4 nicotinic acetylcholine receptors in the medial habenula modulate the mesolimbic dopaminergic response to acute nicotine in vivo. Neuropharmacology 63:434–440. https://doi.org/10.1016/j.neuropharm.2012.04.015

Article  CAS 

留言 (0)

沒有登入
gif