Bagdas D, Alkhlaif Y, Jackson A, Carroll FI, Ditre JW, Damaj MI (2018) New insights on the effects of varenicline on nicotine reward, withdrawal and hyperalgesia in mice. Neuropharmacology 138:72–79. https://doi.org/10.1016/j.neuropharm.2018.05.025
Article CAS PubMed PubMed Central Google Scholar
Bardo MT, Bevins RA (2000) Conditioned place preference: what does it add to our preclinical understanding of drug reward? Psychopharmacology 153:31–43. https://doi.org/10.1007/s002130000569
Article CAS PubMed Google Scholar
Becker JB, Koob GF (2016) Sex differences in animal models: focus on addiction. Pharmacol Rev 68:242–263. https://doi.org/10.1124/pr.115.011163
Article CAS PubMed PubMed Central Google Scholar
Benli AR, Erturhan S, Oruc MA, Kalpakci P, Sunay D, Demirel Y (2017) A comparison of the efficacy of varenicline and bupropion and an evaluation of the effect of the medications in the context of the smoking cessation programme. Tob Induc Dis 15:10. https://doi.org/10.1186/s12971-017-0116-0
Article CAS PubMed PubMed Central Google Scholar
Berrettini W, Yuan X, Tozzi F, Song K, Francks C, Chilcoat H, Waterworth D, Muglia P, Mooser V (2008) α-5/α-3 nicotinic receptor subunit alleles increase risk for heavy smoking. Mol Psychiatry 13:368–373. https://doi.org/10.1038/sj.mp.4002154
Article CAS PubMed PubMed Central Google Scholar
Bierut LJ, Stitzel JA, Wang JC et al (2008) Variants in nicotinic receptors and risk for nicotine dependence. Am J Psychiatry 165:1163–1171. https://doi.org/10.1176/appi.ajp.2008.07111711
Article PubMed PubMed Central Google Scholar
Bourdy R, Sánchez-Catalán MJ, Kaufling J et al (2014) Control of the nigrostriatal dopamine neuron activity and motor function by the tail of the ventral tegmental area. Neuropsychopharmacology 39:2788–2798. https://doi.org/10.1038/npp.2014.129
Article CAS PubMed PubMed Central Google Scholar
Cunningham CL, Gremel CM, Groblewski PA (2006) Drug-induced conditioned place preference and aversion in mice. Nat Protoc 1:1662–1670. https://doi.org/10.1038/nprot.2006.279
Article CAS PubMed Google Scholar
D'Souza MS, Markou A (2011) Neuronal mechanisms underlying development of nicotine dependence: implications for novel smoking-cessation treatments. Addict Sci Clin Pract 6:4–16. http://www.ncbi.nlm.nih.gov/pmc/articles/pmc3188825. Accessed 05 Jan 2023
Dani JA, Heinemann S (1996) Molecular and cellular aspects of nicotine abuse. Neuron 16:905–908. https://doi.org/10.1016/s0896-6273(00)80112-9
Article CAS PubMed Google Scholar
Eggan BL, McCallum SE (2016) 18-Methoxycoronaridine acts in the medial habenula to attenuate behavioral and neurochemical sensitization to nicotine. Behav Brain Res 307:186–193. https://doi.org/10.1016/j.bbr.2016.04.008
Article CAS PubMed Google Scholar
Elayouby KS, Ishikawa M, Dukes AJ, Smith ACW, Lu Q, Fowler CD, Kenny PJ (2021) α3* Nicotinic acetylcholine receptors in the habenula-interpeduncular nucleus circuit regulate nicotine intake. J Neurosci 41:1779–1787. https://doi.org/10.1523/jneurosci.0127-19.2020
Article CAS PubMed PubMed Central Google Scholar
Fowler CD, Arends MA, Kenny PJ (2008) Subtypes of nicotinic acetylcholine receptors in nicotine reward, dependence, and withdrawal: evidence from genetically modified mice. Behav Pharmacol 19:461–484. https://doi.org/10.1097/fbp.0b013e32830c360e
Article CAS PubMed PubMed Central Google Scholar
Fowler CD, Lu Q, Johnson PM, Marks MJ, Kenny PJ (2011) Habenular α5 nicotinic receptor subunit signalling controls nicotine intake. Nature 471:597–601. https://doi.org/10.1038/nature09797
Article CAS PubMed PubMed Central Google Scholar
Fu Y, Matta SG, Gao W, Brower VG, Sharp BM (2000) Systemic nicotine stimulates dopamine release in nucleus accumbens: re-evaluation of the role of N-methyl-D-aspartate receptors in the ventral tegmental area. J Pharmacol Exp Ther 294:458–465. https://pubmed.ncbi.nlm.nih.gov/10900219. Accessed 13 Aug 2022
Glick S, Sell E, Maisonneuve I (2008) Brain regions mediating α3β4 nicotinic antagonist effects of 18-MC on methamphetamine and sucrose self-administration. Eur J Pharmacol 599:91–95. https://doi.org/10.1016/j.ejphar.2008.09.038
Article CAS PubMed PubMed Central Google Scholar
Glick SD, Sell EM, McCallum SE, Maisonneuve IM (2011) Brain regions mediating alpha3beta4 nicotinic antagonist effects of 18-MC on nicotine self-administration. Eur J Pharmacol 669:71–75. https://doi.org/10.1016/j.ejphar.2011.08.001
Article CAS PubMed PubMed Central Google Scholar
Gotti C, Clementi F, Fornari A et al (2009) Structural and functional diversity of native brain neuronal nicotinic receptors. Biochem Pharmacol 78:703–711. https://doi.org/10.1016/j.bcp.2009.05.024
Article CAS PubMed Google Scholar
Guest PC (2019) Pre-clinical models: Techniques and protocols. Springer, New York
Guillem K, Vouillac AMR, Parsons LH, Koop GF, Cador M, Stinus L (2006) Monoamine oxidase A rather than monoamine oxidase B inhibition increases nicotine reinforcement in rats. Eur J Neurosci 24:3532–3540. https://doi.org/10.1111/j.1460-9568.2006.05217.x
Isiegas C, Mague SD, Blendy JA (2009) Sex differences in response to nicotine in C57Bl/6:129SvEv mice. Nicotine Tob Res 11:851–858. https://doi.org/10.1093/ntr/ntp076
Article CAS PubMed PubMed Central Google Scholar
Kenny PJ, Markou A (2001) Neurobiology of the nicotine withdrawal syndrome. Pharmacol Biochem Behav 70:531–549. https://doi.org/10.1016/s0091-3057(01)00651-7
Article CAS PubMed Google Scholar
Khroyan TV, Yasuda D, Toll L, Pogar WE, Zeveri NT (2015) High affinity α3β4 nicotinic acetylcholine receptor ligands AT-1001 and AT-1012 attenuate cocaine-induced conditioned place preference and behavioral sensitization in mice. Biochem Pharmacol 97:531–541. https://doi.org/10.1016/j.bcp.2015.08.083
Article CAS PubMed PubMed Central Google Scholar
Kleijn J, Folgering JHA, van der Hart MCG, Rollema H, Cremers TIFH, Westerink BHC (2011) Direct effect of nicotine on mesolimbic dopamine release in rat nucleus accumbens shell. Neurosci Lett 493:55–58. https://doi.org/10.1016/j.neulet.2011.02.035
Article CAS PubMed Google Scholar
Lee HW, Yang SH, Kim JY, Kim H (2019) The role of the medial habenula cholinergic system in addiction and emotion-associated behaviors. Front Psychiatry 10:100. https://doi.org/10.3389/fpsyt.2019.00100
Article CAS PubMed PubMed Central Google Scholar
Li X, You S, Xiong J, Qiao Y, Yu J, Zhangsun D, Luo S (2020) α-Conotoxin TxID and [S9K]TxID, α3β4 nAChR antagonists, attenuate expression and reinstatement of nicotine-induced conditioned place preference in mice. Mar Drug 18:646. https://doi.org/10.3390/md18120646
Markou A (2008) Neurobiology of nicotine dependence. Philos Trans R Soc Lond B Biol Sci 363:3159–3168. https://doi.org/10.1098/rstb.2008.0095
Article CAS PubMed PubMed Central Google Scholar
McCallum SE, Cowe MA, Lewis SW, Glick SD (2012) α3β4 nicotinic acetylcholine receptors in the medial habenula modulate the mesolimbic dopaminergic response to acute nicotine in vivo. Neuropharmacology 63:434–440. https://doi.org/10.1016/j.neuropharm.2012.04.015
留言 (0)