New CRISPR/Cas9-based Fgfr2C361Y/+ mouse model of Crouzon syndrome exhibits skull and behavioral abnormalities

Cohen MM Jr, Kreiborg S (1992) Birth prevalence studies of the Crouzon syndrome: comparison of direct and indirect methods. Clin Genet 41:12–15. https://doi.org/10.1111/j.1399-0004.1992.tb03620.x

Article  PubMed  Google Scholar 

Lee ES, Lee SH, Han SW, Kim YO, Lim SY (2024) Association of cranial base suture/synchondrosis fusion with severity of increased intracranial pressure in Crouzon syndrome. Journal of cranio-maxillo-facial surgery : official publication of the European Association for Cranio-Maxillo-Facial Surgery 52:385–392. https://doi.org/10.1016/j.jcms.2024.02.011

Article  PubMed  Google Scholar 

Forte AJ, Lu X, Hashim PW, Steinbacher DM, Alperovich M, Persing JA, Alonso N (2019) Analysis of airway and midface in Crouzon syndromes. Ann Plast Surg 82:686–691. https://doi.org/10.1097/sap.0000000000001740

Article  PubMed  CAS  Google Scholar 

Maliepaard M, Mathijssen IM, Oosterlaan J, Okkerse JM (2014) Intellectual, behavioral, and emotional functioning in children with syndromic craniosynostosis. Pediatrics 133:e1608-1615. https://doi.org/10.1542/peds.2013-3077

Article  PubMed  Google Scholar 

Cohn ER, Hesky EM, Bradley WF Jr, McWilliams BJ, Hurwitz DJ, Wallace SB (1985) Life response to Crouzon’s disease. Cleft Palate J 22:123–131

PubMed  CAS  Google Scholar 

Barden RC, Ford ME, Wilhelm WM, Rogers-Salyer M, Salyer KE (1988) Emotional and behavioral reactions to facially deformed patients before and after craniofacial surgery. Plast Reconstr Surg 82:409–418. https://doi.org/10.1097/00006534-198809000-00006

Article  PubMed  CAS  Google Scholar 

Pertschuk MJ, Whitaker LA (1985) Psychosocial adjustment and craniofacial malformations in childhood. Plast Reconstr Surg 75:177–184. https://doi.org/10.1097/00006534-198502000-00005

Article  PubMed  CAS  Google Scholar 

Stanton E, Urata M, Chen JF, Chai Y (2022) The clinical manifestations, molecular mechanisms and treatment of craniosynostosis. Dis Model Mech 15:dmm049390. https://doi.org/10.1242/dmm.049390

Article  PubMed  PubMed Central  CAS  Google Scholar 

Eswarakumar VP, Horowitz MC, Locklin R, Morriss-Kay GM, Lonai P (2004) A gain-of-function mutation of Fgfr2c demonstrates the roles of this receptor variant in osteogenesis. Proc Natl Acad Sci U S A 101:12555–12560. https://doi.org/10.1073/pnas.0405031101

Article  PubMed  PubMed Central  CAS  Google Scholar 

Mai S, Wei K, Flenniken A, Adamson SL, Rossant J, Aubin JE, Gong SG (2010) The missense mutation W290R in Fgfr2 causes developmental defects from aberrant IIIb and IIIc signaling. Devel Dynam Off Pub Am Assoc Anatom 239:1888–1900. https://doi.org/10.1002/dvdy.22314

Article  CAS  Google Scholar 

Cornille M, Moriceau S, Khonsari RH, Heuzé Y, Loisay L, Boitez V, Morice A, Arnaud E, Collet C, Bensidhoum M et al (2022) FGFR3 overactivation in the brain is responsible for memory impairments in Crouzon syndrome mouse model. J Exp Med 219:e20201879. https://doi.org/10.1084/jem.20201879

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823. https://doi.org/10.1126/science.1231143

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ul Ain Q, Chung JY, Kim YH (2015) Current and future delivery systems for engineered nucleases: ZFN, TALEN and RGEN. J Control Release 205:120–127. https://doi.org/10.1016/j.jconrel.2014.12.036

Article  PubMed  CAS  Google Scholar 

De Moerlooze L, Spencer-Dene B, Revest JM, Hajihosseini M, Rosewell I, Dickson C (2000) An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis. Development (Cambridge, England) 127:483–492. https://doi.org/10.1242/dev.127.3.483

Article  PubMed  Google Scholar 

Eswarakumar VP, Monsonego-Ornan E, Pines M, Antonopoulou I, Morriss-Kay GM, Lonai P (2002) The IIIc alternative of Fgfr2 is a positive regulator of bone formation. Development (Cambridge, England) 129:3783–3793. https://doi.org/10.1242/dev.129.16.3783

Article  PubMed  CAS  Google Scholar 

Beenken A, Mohammadi M (2009) The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 8:235–253. https://doi.org/10.1038/nrd2792

Article  PubMed  PubMed Central  CAS  Google Scholar 

Steinberger D, Mulliken JB, Müller U (1995) Predisposition for cysteine substitutions in the immunoglobulin-like chain of FGFR2 in Crouzon syndrome. Hum Genet 96:113–115. https://doi.org/10.1007/bf00214198

Article  PubMed  CAS  Google Scholar 

Wilkie AO (1997) Craniosynostosis: genes and mechanisms. Hum Mol Genet 6:1647–1656. https://doi.org/10.1093/hmg/6.10.1647

Article  PubMed  CAS  Google Scholar 

Wilkie AO, Byren JC, Hurst JA, Jayamohan J, Johnson D, Knight SJ, Lester T, Richards PG, Twigg SR, Wall SA (2010) Prevalence and complications of single-gene and chromosomal disorders in craniosynostosis. Pediatrics 126:e391-400. https://doi.org/10.1542/peds.2009-3491

Article  PubMed  Google Scholar 

Johnson D, Wilkie AO (2011) Craniosynostosis. Eur J Hum Genet 19:369–376. https://doi.org/10.1038/ejhg.2010.235

Article  PubMed  PubMed Central  CAS  Google Scholar 

Richtsmeier JT, Baxter LL, Reeves RH (2000) Parallels of craniofacial maldevelopment in Down syndrome and Ts65Dn mice. Devel DynamOff Public Am Assoc Anatom 217:137–145. https://doi.org/10.1002/(sici)1097-0177(200002)217:2%3c137::Aid-dvdy1%3e3.0.Co;2-n

Article  CAS  Google Scholar 

Perlyn CA, DeLeon VB, Babbs C, Govier D, Burell L, Darvann T, Kreiborg S, Morriss-Kay G (2006) The craniofacial phenotype of the Crouzon mouse: analysis of a model for syndromic craniosynostosis using three-dimensional microCT. Cleft Palate-craniofac J Off Public Am Cleft Palate-Craniof Assoc 43:740–748. https://doi.org/10.1597/05-212

Article  Google Scholar 

Liu J, Nam HK, Wang E, Hatch NE (2013) Further analysis of the Crouzon mouse: effects of the FGFR2(C342Y) mutation are cranial bone-dependent. Calcif Tiss Int 92:451–466. https://doi.org/10.1007/s00223-013-9701-2

Article  CAS  Google Scholar 

Chao OY, Nikolaus S, Yang YM, Huston JP (2022) Neuronal circuitry for recognition memory of object and place in rodent models. Neurosci Biobehav Rev 141:104855. https://doi.org/10.1016/j.neubiorev.2022.104855

Article  PubMed  PubMed Central  Google Scholar 

Kaidanovich-Beilin O, Lipina T, Vukobradovic I, Roder J, Woodgett JR (2011) Assessment of social interaction behaviors. J Visual Exp JoVE. https://doi.org/10.3791/2473

Article  Google Scholar 

Lubrich C, Giesler P, Kipp M (2022) Motor behavioral deficits in the cuprizone model: validity of the rotarod test paradigm. Int J Mol Sci 23:11342. https://doi.org/10.3390/ijms231911342

Article  PubMed  PubMed Central  CAS  Google Scholar 

Pentkowski NS, Rogge-Obando KK, Donaldson TN, Bouquin SJ, Clark BJ (2021) Anxiety and Alzheimer’s disease: behavioral analysis and neural basis in rodent models of Alzheimer’s-related neuropathology. Neurosci Biobehav Rev 127:647–658. https://doi.org/10.1016/j.neubiorev.2021.05.005

Article  PubMed  PubMed Central  CAS  Google Scholar 

Walz N, Mühlberger A, Pauli P (2016) A human open field test reveals thigmotaxis related to agoraphobic fear. Biol Psychiatry 80:390–397. https://doi.org/10.1016/j.biopsych.2015.12.016

Article  PubMed 

留言 (0)

沒有登入
gif