Protective role of M3 muscarinic acetylcholine receptor in indomethacin-induced small intestinal injury

Higuchi K, Umegaki E, Watanabe T et al (2009) Present status and strategy of NSAIDs-induced small bowel injury. J Gastroenterol 44:879–888. https://doi.org/10.1007/s00535-009-0102-2

Article  PubMed  Google Scholar 

Endo H, Sakai E, Kato T et al (2015) Small bowel injury in low-dose aspirin users. J Gastroenterol 50:378–386. https://doi.org/10.1007/s00535-014-1028-x

Article  CAS  PubMed  Google Scholar 

Matsumoto T, Kudo T, Esaki M et al (2008) Prevalence of non-steroidal anti-inflammatory drug-induced enteropathy determined by double-balloon endoscopy: a Japanese multicenter study. Scand J Gastroenterol 43:490–496. https://doi.org/10.1080/00365520701794121

Article  CAS  PubMed  Google Scholar 

Edogawa S, Peters SA, Jenkins GD et al (2018) Sex differences in NSAID-induced perturbation of human intestinal barrier function and microbiota. FASEB J, fj201800560R. https://doi.org/10.1096/fj.201800560R

Bjarnason I, Scarpignato C, Holmgren E, Olszewski M, Rainsford KD, Lanas A (2018) Mechanisms of damage to the gastrointestinal tract from nonsteroidal anti-inflammatory drugs. Gastroenterology 154:500–514. https://doi.org/10.1053/j.gastro.2017.10.049

Article  CAS  PubMed  Google Scholar 

Washio E, Esaki M, Maehata Y et al (2016) Proton pump inhibitors increase incidence of nonsteroidal anti-inflammatory drug-induced small bowel injury: A randomized, placebo-controlled trial. Clin Gastroenterol Hepatol 14:809-815.e801. https://doi.org/10.1016/j.cgh.2015.10.022

Article  CAS  PubMed  Google Scholar 

Wallace JL, Syer S, Denou E et al (2011) Proton pump inhibitors exacerbate NSAID-induced small intestinal injury by inducing dysbiosis. Gastroenterology 141(1314–1322):1322.e1311–1315. https://doi.org/10.1053/j.gastro.2011.06.075

Article  CAS  Google Scholar 

McGuckin MA, Lindén SK, Sutton P, Florin TH (2011) Mucin dynamics and enteric pathogens. Nat Rev Microbiol 9:265–278. https://doi.org/10.1038/nrmicro2538

Article  CAS  PubMed  Google Scholar 

Hirota CL, McKay DM (2006) Cholinergic regulation of epithelial ion transport in the mammalian intestine. Br J Pharmacol 149:463–479. https://doi.org/10.1038/sj.bjp.0706889

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gustafsson JK, Ermund A, Johansson ME, Schütte A, Hansson GC, Sjövall H (2012) An ex vivo method for studying mucus formation, properties, and thickness in human colonic biopsies and mouse small and large intestinal explants. Am J Physiol Gastrointest Liver Physiol 302:G430-438. https://doi.org/10.1152/ajpgi.00405.2011

Article  CAS  PubMed  Google Scholar 

Dey I, Lejeune M, Chadee K (2006) Prostaglandin E2 receptor distribution and function in the gastrointestinal tract. Br J Pharmacol 149:611–623. https://doi.org/10.1038/sj.bjp.0706923

Article  CAS  PubMed  PubMed Central  Google Scholar 

Takeuchi K, Kato S, Amagase K (2010) Prostaglandin EP receptors involved in modulating gastrointestinal mucosal integrity. J Pharmacol Sci 114:248–261. https://doi.org/10.1254/jphs.10r06cr

Article  CAS  PubMed  Google Scholar 

Kunikata T, Araki H, Takeeda M, Kato S, Takeuchi K (2001) Prostaglandin E prevents indomethacin-induced gastric and intestinal damage through different EP receptor subtypes. J Physiol Paris 95:157–163. https://doi.org/10.1016/s0928-4257(01)00021-3

Article  CAS  PubMed  Google Scholar 

Taha AS, McCloskey C, McSkimming P, McConnachie A (2018) Misoprostol for small bowel ulcers in patients with obscure bleeding taking aspirin and non-steroidal anti-inflammatory drugs (MASTERS): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Gastroenterol Hepatol 3:469–476. https://doi.org/10.1016/S2468-1253(18)30119-5

Article  PubMed  Google Scholar 

Watanabe T, Sugimori S, Kameda N et al (2008) Small bowel injury by low-dose enteric-coated aspirin and treatment with misoprostol: a pilot study. Clin Gastroenterol Hepatol 6:1279–1282. https://doi.org/10.1016/j.cgh.2008.06.021

Article  PubMed  Google Scholar 

Kruse AC, Hu J, Pan AC et al (2012) Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 482:552–556. https://doi.org/10.1038/nature10867

Article  CAS  PubMed  PubMed Central  Google Scholar 

Igarashi-Hisayoshi Y, Ihara E, Bai X et al (2023) Determination of region-specific roles of the M3 muscarinic acetylcholine receptor in gastrointestinal motility. Dig Dis Sci 68:439–450. https://doi.org/10.1007/s10620-022-07637-y

Article  CAS  PubMed  Google Scholar 

Burford NT, Traynor JR, Alt A (2015) Positive allosteric modulators of the μ-opioid receptor: a novel approach for future pain medications. Br J Pharmacol 172:277–286. https://doi.org/10.1111/bph.12599

Article  CAS  PubMed  Google Scholar 

Jakubík J, El-Fakahany EE (2010) Allosteric Modulation of muscarinic acetylcholine receptors. Pharmaceuticals (Basel) 3:2838–2860. https://doi.org/10.3390/ph3092838

Article  CAS  PubMed  Google Scholar 

Tang OS, Gemzell-Danielsson K, Ho PC (2007) Misoprostol: pharmacokinetic profiles, effects on the uterus and side-effects. Int J Gynaecol Obstet 99:S160-167. https://doi.org/10.1016/j.ijgo.2007.09.004

Article  CAS  PubMed  Google Scholar 

Hirota CL, McKay DM (2006) M3 muscarinic receptor-deficient mice retain bethanechol-mediated intestinal ion transport and are more sensitive to colitis. Can J Physiol Pharmacol 84:1153–1161. https://doi.org/10.1139/y06-068

Article  CAS  PubMed  Google Scholar 

Gustafsson JK, Lindén SK, Alwan AH, Scholte BJ, Hansson GC, Sjövall H (2015) Carbachol-induced colonic mucus formation requires transport via NKCC1, K⁺ channels and CFTR. Pflugers Arch 467:1403–1415. https://doi.org/10.1007/s00424-014-1595-y

Article  CAS  PubMed  Google Scholar 

Garcia MA, Yang N, Quinton PM (2009) Normal mouse intestinal mucus release requires cystic fibrosis transmembrane regulator-dependent bicarbonate secretion. J Clin Invest 119:2613–2622. https://doi.org/10.1172/JCI38662

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barrett KE, Keely SJ (2000) Chloride secretion by the intestinal epithelium: molecular basis and regulatory aspects. Annu Rev Physiol 62:535–572. https://doi.org/10.1146/annurev.physiol.62.1.535

Article  CAS  PubMed  Google Scholar 

Yoshida M, Inadome A, Maeda Y et al (2006) Non-neuronal cholinergic system in human bladder urothelium. Urology 67:425–430. https://doi.org/10.1016/j.urology.2005.08.014

Article  PubMed  Google Scholar 

Pohl CS, Lennon EM, Li Y, DeWilde MP, Moeser AJ (2018) S. Typhimurium challenge in juvenile pigs modulates the expression and localization of enteric cholinergic proteins and correlates with mucosal injury and inflammation. Auton Neurosci 213:51–59. https://doi.org/10.1016/j.autneu.2018.05.009

Article  CAS  PubMed  PubMed Central  Google Scholar 

Spicuzza L, Giembycz MA, Barnes PJ, Belvisi MG (1998) Prostaglandin E2 suppression of acetylcholine release from parasympathetic nerves innervating guinea-pig trachea by interacting with prostanoid receptors of the EP3-subtype. Br J Pharmacol 123:1246–1252. https://doi.org/10.1038/sj.bjp.0701720

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nathanson NM (2008) Synthesis, trafficking, and localization of muscarinic acetylcholine receptors. Pharmacol Ther 119:33–43. https://doi.org/10.1016/j.pharmthera.2008.04.006

Article  CAS  PubMed 

留言 (0)

沒有登入
gif