Higuchi K, Umegaki E, Watanabe T et al (2009) Present status and strategy of NSAIDs-induced small bowel injury. J Gastroenterol 44:879–888. https://doi.org/10.1007/s00535-009-0102-2
Endo H, Sakai E, Kato T et al (2015) Small bowel injury in low-dose aspirin users. J Gastroenterol 50:378–386. https://doi.org/10.1007/s00535-014-1028-x
Article CAS PubMed Google Scholar
Matsumoto T, Kudo T, Esaki M et al (2008) Prevalence of non-steroidal anti-inflammatory drug-induced enteropathy determined by double-balloon endoscopy: a Japanese multicenter study. Scand J Gastroenterol 43:490–496. https://doi.org/10.1080/00365520701794121
Article CAS PubMed Google Scholar
Edogawa S, Peters SA, Jenkins GD et al (2018) Sex differences in NSAID-induced perturbation of human intestinal barrier function and microbiota. FASEB J, fj201800560R. https://doi.org/10.1096/fj.201800560R
Bjarnason I, Scarpignato C, Holmgren E, Olszewski M, Rainsford KD, Lanas A (2018) Mechanisms of damage to the gastrointestinal tract from nonsteroidal anti-inflammatory drugs. Gastroenterology 154:500–514. https://doi.org/10.1053/j.gastro.2017.10.049
Article CAS PubMed Google Scholar
Washio E, Esaki M, Maehata Y et al (2016) Proton pump inhibitors increase incidence of nonsteroidal anti-inflammatory drug-induced small bowel injury: A randomized, placebo-controlled trial. Clin Gastroenterol Hepatol 14:809-815.e801. https://doi.org/10.1016/j.cgh.2015.10.022
Article CAS PubMed Google Scholar
Wallace JL, Syer S, Denou E et al (2011) Proton pump inhibitors exacerbate NSAID-induced small intestinal injury by inducing dysbiosis. Gastroenterology 141(1314–1322):1322.e1311–1315. https://doi.org/10.1053/j.gastro.2011.06.075
McGuckin MA, Lindén SK, Sutton P, Florin TH (2011) Mucin dynamics and enteric pathogens. Nat Rev Microbiol 9:265–278. https://doi.org/10.1038/nrmicro2538
Article CAS PubMed Google Scholar
Hirota CL, McKay DM (2006) Cholinergic regulation of epithelial ion transport in the mammalian intestine. Br J Pharmacol 149:463–479. https://doi.org/10.1038/sj.bjp.0706889
Article CAS PubMed PubMed Central Google Scholar
Gustafsson JK, Ermund A, Johansson ME, Schütte A, Hansson GC, Sjövall H (2012) An ex vivo method for studying mucus formation, properties, and thickness in human colonic biopsies and mouse small and large intestinal explants. Am J Physiol Gastrointest Liver Physiol 302:G430-438. https://doi.org/10.1152/ajpgi.00405.2011
Article CAS PubMed Google Scholar
Dey I, Lejeune M, Chadee K (2006) Prostaglandin E2 receptor distribution and function in the gastrointestinal tract. Br J Pharmacol 149:611–623. https://doi.org/10.1038/sj.bjp.0706923
Article CAS PubMed PubMed Central Google Scholar
Takeuchi K, Kato S, Amagase K (2010) Prostaglandin EP receptors involved in modulating gastrointestinal mucosal integrity. J Pharmacol Sci 114:248–261. https://doi.org/10.1254/jphs.10r06cr
Article CAS PubMed Google Scholar
Kunikata T, Araki H, Takeeda M, Kato S, Takeuchi K (2001) Prostaglandin E prevents indomethacin-induced gastric and intestinal damage through different EP receptor subtypes. J Physiol Paris 95:157–163. https://doi.org/10.1016/s0928-4257(01)00021-3
Article CAS PubMed Google Scholar
Taha AS, McCloskey C, McSkimming P, McConnachie A (2018) Misoprostol for small bowel ulcers in patients with obscure bleeding taking aspirin and non-steroidal anti-inflammatory drugs (MASTERS): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Gastroenterol Hepatol 3:469–476. https://doi.org/10.1016/S2468-1253(18)30119-5
Watanabe T, Sugimori S, Kameda N et al (2008) Small bowel injury by low-dose enteric-coated aspirin and treatment with misoprostol: a pilot study. Clin Gastroenterol Hepatol 6:1279–1282. https://doi.org/10.1016/j.cgh.2008.06.021
Kruse AC, Hu J, Pan AC et al (2012) Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 482:552–556. https://doi.org/10.1038/nature10867
Article CAS PubMed PubMed Central Google Scholar
Igarashi-Hisayoshi Y, Ihara E, Bai X et al (2023) Determination of region-specific roles of the M3 muscarinic acetylcholine receptor in gastrointestinal motility. Dig Dis Sci 68:439–450. https://doi.org/10.1007/s10620-022-07637-y
Article CAS PubMed Google Scholar
Burford NT, Traynor JR, Alt A (2015) Positive allosteric modulators of the μ-opioid receptor: a novel approach for future pain medications. Br J Pharmacol 172:277–286. https://doi.org/10.1111/bph.12599
Article CAS PubMed Google Scholar
Jakubík J, El-Fakahany EE (2010) Allosteric Modulation of muscarinic acetylcholine receptors. Pharmaceuticals (Basel) 3:2838–2860. https://doi.org/10.3390/ph3092838
Article CAS PubMed Google Scholar
Tang OS, Gemzell-Danielsson K, Ho PC (2007) Misoprostol: pharmacokinetic profiles, effects on the uterus and side-effects. Int J Gynaecol Obstet 99:S160-167. https://doi.org/10.1016/j.ijgo.2007.09.004
Article CAS PubMed Google Scholar
Hirota CL, McKay DM (2006) M3 muscarinic receptor-deficient mice retain bethanechol-mediated intestinal ion transport and are more sensitive to colitis. Can J Physiol Pharmacol 84:1153–1161. https://doi.org/10.1139/y06-068
Article CAS PubMed Google Scholar
Gustafsson JK, Lindén SK, Alwan AH, Scholte BJ, Hansson GC, Sjövall H (2015) Carbachol-induced colonic mucus formation requires transport via NKCC1, K⁺ channels and CFTR. Pflugers Arch 467:1403–1415. https://doi.org/10.1007/s00424-014-1595-y
Article CAS PubMed Google Scholar
Garcia MA, Yang N, Quinton PM (2009) Normal mouse intestinal mucus release requires cystic fibrosis transmembrane regulator-dependent bicarbonate secretion. J Clin Invest 119:2613–2622. https://doi.org/10.1172/JCI38662
Article CAS PubMed PubMed Central Google Scholar
Barrett KE, Keely SJ (2000) Chloride secretion by the intestinal epithelium: molecular basis and regulatory aspects. Annu Rev Physiol 62:535–572. https://doi.org/10.1146/annurev.physiol.62.1.535
Article CAS PubMed Google Scholar
Yoshida M, Inadome A, Maeda Y et al (2006) Non-neuronal cholinergic system in human bladder urothelium. Urology 67:425–430. https://doi.org/10.1016/j.urology.2005.08.014
Pohl CS, Lennon EM, Li Y, DeWilde MP, Moeser AJ (2018) S. Typhimurium challenge in juvenile pigs modulates the expression and localization of enteric cholinergic proteins and correlates with mucosal injury and inflammation. Auton Neurosci 213:51–59. https://doi.org/10.1016/j.autneu.2018.05.009
Article CAS PubMed PubMed Central Google Scholar
Spicuzza L, Giembycz MA, Barnes PJ, Belvisi MG (1998) Prostaglandin E2 suppression of acetylcholine release from parasympathetic nerves innervating guinea-pig trachea by interacting with prostanoid receptors of the EP3-subtype. Br J Pharmacol 123:1246–1252. https://doi.org/10.1038/sj.bjp.0701720
Article CAS PubMed PubMed Central Google Scholar
Nathanson NM (2008) Synthesis, trafficking, and localization of muscarinic acetylcholine receptors. Pharmacol Ther 119:33–43. https://doi.org/10.1016/j.pharmthera.2008.04.006
留言 (0)