Stochastic lattice-based porous implant design for improving the stress transfer in unicompartmental knee arthroplasty

Newman J, Pydisetty RV, Ackroyd C. Unicompartmental or total knee replacement: the 15-year results of a prospective randomised controlled trial. J Bone Joint Surg Br. 2009;91(1):52–7.

Article  CAS  PubMed  Google Scholar 

Sangaletti R, Andriollo L, Montagna A, Are L, Benazzo F, Rossi SMP. Lateral UKA can be a safe solution in a young patients’ population: a 10-year follow-up report. Arch Orthop Trauma Surg. 2024.

Mikkelsen M, Wilson HA, Gromov K, Price AJ, Troelsen A. Comparing surgical strategies for end-stage anteromedial osteoarthritis TOTAL VERSUS UNICOMPARTMENTAL KNEE ARTHROPLASTY. Bone Joint Open. 2022;3(5):441–7.

Article  PubMed  PubMed Central  Google Scholar 

Rossi SMP, Perticarini L, Clocchiatti S, Ghiara M, Benazzo F. Mid- to long-term follow-up of combined small implants. Bone Joint J. 2021;103–B(5):840–5.

Article  PubMed  Google Scholar 

Rossi SMP, Sangaletti R, Nesta F, Matascioli L, Terragnoli F, Benazzo F. A well performing medial fixed bearing UKA with promising survivorship at 15 years. Arch Orthop Trauma Surg. 2022;143(5):2693–9.

Article  PubMed  Google Scholar 

Katti KS. Biomaterials in total joint replacement. Colloids Surf B Biointerfaces. 2004;39(3):133–42.

Article  CAS  PubMed  Google Scholar 

Lenguerrand E, Whitehouse MR, Kunutsor SK, et al. Mortality and re- revision following single- stage and two- stage revision surgery for the management of infected primary knee arthroplasty in England and Wales. Bone Joint Res. 2022;11(10):690–9.

Article  PubMed  PubMed Central  Google Scholar 

Stoddart JC, Garner A, Tuncer M, Cobb JP, van Arkel RJ. The risk of tibial eminence avulsion fracture with bi-unicondylar knee arthroplasty. Bone Joint Res. 2022;11(8):575–84.

Article  PubMed  PubMed Central  Google Scholar 

Sangaletti R, Meschini C, Capece G, et al. A morphometric medial compartment-specific unicompartmental knee system: 5 years follow up results from a pilot center. Knee. 2024;47:179–85.

Article  PubMed  Google Scholar 

Zhang QH, Cossey A, Tong J. Stress shielding in periprosthetic bone following a total knee replacement: effects of implant material, design and alignment. Med Eng Phys. 2016;38(12):1481–8.

Article  PubMed  Google Scholar 

Mehboob H, Ahmad F, Tarlochan F, Mehboob A, Chang SH. A comprehensive analysis of bio-inspired design of femoral stem on primary and secondary stabilities using mechanoregulatory algorithm. Biomech Model Mechanobiol. 2020;19(6):2213–26.

Article  PubMed  Google Scholar 

de Ruiter L, Rankin K, Browne M, Briscoe A, Janssen D, Verdonschot N. Decreased stress shielding with a PEEK femoral total knee prosthesis measured in validated computational models. J Biomech. 2021;118:110270.

Article  PubMed  Google Scholar 

de Ruiter L, Janssen D, Briscoe A, Verdonschot N. Fixation strength of a polyetheretherketone femoral component in total knee arthroplasty. Med Eng Phys. 2017;49:157–62.

Article  PubMed  Google Scholar 

Wang X, Xu S, Zhou S, et al. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials. 2016;83:127–41.

Article  CAS  PubMed  Google Scholar 

Li J, Li Z, Shi Y, et al. In vitro and in vivo comparisons of the porous Ti6Al4V alloys fabricated by the selective laser melting technique and a new sintering technique. J Mech Behav Biomed Mater. 2019;91:149–58.

Article  CAS  PubMed  Google Scholar 

Wang H, Su K, Su L, Liang P, Ji P, Wang C. Comparison of 3D-printed porous tantalum and titanium scaffolds on osteointegration and osteogenesis. Mater Sci Eng C Mater Biol Appl. 2019;104:109908.

Article  CAS  PubMed  Google Scholar 

Ran Q, Yang W, Hu Y, et al. Osteogenesis of 3D printed porous Ti6Al4V implants with different pore sizes. J Mech Behav Biomed Mater. 2018;84:1–11.

Article  CAS  PubMed  Google Scholar 

Sarker A, Leary M, Fox K. Metallic additive manufacturing for bone-interfacing implants. Biointerphases. 2020;15(5):050801.

Article  CAS  PubMed  Google Scholar 

Munford MJ, Stoddart JC, Liddle AD, Cobb JP, Jeffers JRT. Total and partial knee arthroplasty implants that maintain native load transfer in the tibia. Bone Joint Res. 2022;11(2):91–101.

Article  PubMed  PubMed Central  Google Scholar 

Hossain U, Ghouse S, Nai K, Jeffers JRT. Controlling and testing anisotropy in additively manufactured stochastic structures. Addit Manuf. 2021;39.

Do QT, Nguyen CHP, Choi Y. Homogenization-based optimum design of additively manufactured Voronoi cellular structures. Addit Manuf. 2021;45.

ISO 13314. Mechanical testing of metals—ductility testing—compression test for porous and cellular metals. Int Organ Stand. 2011.

Gibson LJ. Cellular solids. MRS Bull. 2011;28(4):270–4.

Article  Google Scholar 

Ashby MF, Evans A, Fleck N, et al. Metal Foams: Des Guide. 2001;54(6):B105–6.

Google Scholar 

Yang E, Leary M, Lozanovski B et al. Effect of geometry on the mechanical properties of Ti-6Al-4V gyroid structures fabricated via SLM: a numerical study. Mater Des. 2019;184.

Whittier DE, Manske SL, Kiel DP, Bouxsein M, Boyd SK. Harmonizing finite element modelling for non-invasive strength estimation by high-resolution peripheral quantitative computed tomography. J Biomech. 2018;80:63–71.

Article  PubMed  PubMed Central  Google Scholar 

Morgan EF, Bayraktar HH, Keaveny TM. Trabecular bone modulus-density relationships depend on anatomic site. J Biomech. 2003;36(7):897–904.

Article  PubMed  Google Scholar 

Liebschner MA, Keller TS. Hydraulic strengthening affects the stiffness and strength of cortical bone. Ann Biomed Eng. 2005;33(1):26–38.

Article  PubMed  Google Scholar 

Shi XH, Jiang W, Chen HZ, et al. The study of mechanical behavior on the interface between calcar-defect femur and restorations by means of finite element analysis. Appl Surf Sci. 2008;255(2):290–2.

Article  CAS  Google Scholar 

Tuncer M, Cobb JP, Hansen UN, Amis AA. Validation of multiple subject-specific finite element models of unicompartmental knee replacement. Med Eng Phys. 2013;35(10):1457–64.

Article  PubMed  Google Scholar 

Armstrong CG, Lai WM, Mow VC. An analysis of the unconfined compression of articular cartilage. J Biomech Eng. 1984;106(2):165–73.

Article  CAS  PubMed  Google Scholar 

Naghibi Beidokhti H, Janssen D, van de Groes S, Hazrati J, Van den Boogaard T, Verdonschot N. The influence of ligament modelling strategies on the predictive capability of finite element models of the human knee joint. J Biomech. 2017;65:1–11.

Article  PubMed  Google Scholar 

Park S, Lee S, Yoon J, Chae SW. Finite element analysis of knee and ankle joint during gait based on motion analysis. Med Eng Phys. 2019;63:33–41.

Article  PubMed  Google Scholar 

Liu F, Kozanek M, Hosseini A, et al. In vivo tibiofemoral cartilage deformation during the stance phase of gait. J Biomech. 2010;43(4):658–65.

Article  PubMed  Google Scholar 

Bergmann G, Bender A, Graichen F, et al. Standardized loads acting in knee implants. PLoS ONE. 2014;9(1):e86035.

Article  PubMed  PubMed Central  Google Scholar 

Sakane M, Fox RJ, Glen SLYW, Livesay A, Li G, Fu FH. In situ forces in the anterior cruciate ligament and its bundles in response to anterior tibial loads. J Orthop Res. 2005;15(2):285–93.

Article  Google Scholar 

Munford MJ, Ng KCG, Jeffers JRT. Mapping the multi-directional Mechanical properties of bone in the proximal tibia. Adv Funct Mater. 2020;30(46).

Kwon OR, Kang KT, Son J, et al. Biomechanical comparison of fixed- and mobile-bearing for unicomparmental knee arthroplasty using finite element analysis. J Orthop Res. 2014;32(2):338–45.

Article  PubMed  Google Scholar 

Pegg EC, Walter J, Mellon SJ, et al. Evaluation of factors affecting tibial bone strain after unicompartmental knee replacement. J Orthop Res. 2013;31(5):821–8.

Article  PubMed 

留言 (0)

沒有登入
gif