Sigma-1 Receptors Control Neuropathic Pain and Peripheral Neuroinflammation After Nerve Injury in Female Mice: A Transcriptomic Study

Asano K, Takahashi N, Ushiki M et al (2015) Intestinal CD169(+) macrophages initiate mucosal inflammation by secreting CCL8 that recruits inflammatory monocytes. Nat Commun 6:7802. https://doi.org/10.1038/NCOMMS8802

Article  PubMed  CAS  Google Scholar 

Bravo-Caparrós I, Perazzoli G, Yeste S et al (2019) Sigma-1 receptor inhibition reduces neuropathic pain induced by partial sciatic nerve transection in mice by opioid-dependent and -independent mechanisms. Front Pharmacol 10:613. https://doi.org/10.3389/FPHAR.2019.00613/BIBTEX

Article  PubMed  PubMed Central  Google Scholar 

Bravo-Caparrós I, Ruiz-Cantero MC, Perazzoli G et al (2020) Sigma-1 receptors control neuropathic pain and macrophage infiltration into the dorsal root ganglion after peripheral nerve injury. FASEB J 34:5951–5966. https://doi.org/10.1096/FJ.201901921R

Article  PubMed  Google Scholar 

Cendán CM, Pujalte JM, Portillo-Salido E et al (2005) Formalin-induced pain is reduced in sigma(1) receptor knockout mice. Eur J Pharmacol 511:73–74. https://doi.org/10.1016/J.EJPHAR.2005.01.036

Article  PubMed  Google Scholar 

Chen H, Jiang L, Zhang D et al (2022) Exploring the correlation between the Regulation of Macrophages by Regulatory T Cells and Peripheral Neuropathic Pain. Front Neurosci 16. https://doi.org/10.3389/FNINS.2022.813751

Cobos EJ, Nickerson CA, Gao F et al (2018) Mechanistic differences in Neuropathic Pain modalities revealed by correlating behavior with global expression profiling. Cell Rep 22:1301–1312. https://doi.org/10.1016/J.CELREP.2018.01.006

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cortés-Montero E, Sánchez-Blázquez P, Onetti Y et al (2019) Ligands exert biased activity to regulate sigma 1 receptor interactions with cationic TRPA1, TRPV1, and TRPM8 channels. Front Pharmacol 10:634. https://doi.org/10.3389/FPHAR.2019.00634/BIBTEX

Article  PubMed  PubMed Central  Google Scholar 

Costigan M, Belfer I, Griffin RS et al (2010) Multiple chronic pain states are associated with a common amino acid-changing allele in KCNS1. Brain 133:2519–2527. https://doi.org/10.1093/BRAIN/AWQ195

Article  PubMed  PubMed Central  Google Scholar 

Davis-Taber RA, Scott VES (2006) Transcriptional profiling of dorsal root ganglia in a neuropathic pain model using microarray and laser capture microdissection. Drug Dev Res 67:308–330. https://doi.org/10.1002/DDR.20096

Article  CAS  Google Scholar 

de la Puente B, Nadal X, Portillo-Salido E et al (2009) Sigma-1 receptors regulate activity-induced spinal sensitization and neuropathic pain after peripheral nerve injury. Pain 145:294–303. https://doi.org/10.1016/J.PAIN.2009.05.013

Article  PubMed  Google Scholar 

Decosterd I, Woolf CJ (2000) Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 87:149–158. https://doi.org/10.1016/S0304-3959(00)00276-1

Article  PubMed  Google Scholar 

Denaro S, Pasquinucci L, Turnaturi R et al (2023) Sigma-1 receptor inhibition reduces mechanical Allodynia and modulate Neuroinflammation in Chronic Neuropathic Pain. https://doi.org/10.1007/S12035-023-03717-W. Mol Neurobiol

Du X, Gamper N (2013) Potassium channels in peripheral pain pathways: expression, function and therapeutic potential. Curr Neuropharmacol 11:621–640. https://doi.org/10.2174/1570159X113119990042

Article  PubMed  PubMed Central  CAS  Google Scholar 

Entrena JM, Cobos EJ, Nieto FR et al (2009) Sigma-1 receptors are essential for capsaicin-induced mechanical hypersensitivity: studies with selective sigma-1 ligands and sigma-1 knockout mice. Pain 143:252–261. https://doi.org/10.1016/J.PAIN.2009.03.011

Article  PubMed  CAS  Google Scholar 

Ewels P, Magnusson M, Lundin S, Käller M (2016) MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32:3047–3048. https://doi.org/10.1093/BIOINFORMATICS/BTW354

Article  PubMed  PubMed Central  CAS  Google Scholar 

Frankish A, Diekhans M, Jungreis I et al (2021) GENCODE 2021. Nucleic Acids Res 49:D916–D923. https://doi.org/10.1093/NAR/GKAA1087

Article  PubMed  CAS  Google Scholar 

Garvey L, Nelson M, Latch N et al (2012) CNS effects of a CCR5 inhibitor in HIV-infected subjects: a pharmacokinetic and cerebral metabolite study. J Antimicrob Chemother 67:206–212. https://doi.org/10.1093/JAC/DKR427

Article  PubMed  CAS  Google Scholar 

Ge B, Li J, Wei Z et al (2017) Functional expression of CCL8 and its interaction with chemokine receptor CCR3. BMC Immunol 18. https://doi.org/10.1186/S12865-017-0237-5

Ghazisaeidi S, Muley MM, Salter MW (2023) Neuropathic Pain: mechanisms, sex differences, and potential therapies for a global problem. Annu Rev Pharmacol Toxicol 63:565–583. https://doi.org/10.1146/ANNUREV-PHARMTOX-051421-112259

Article  PubMed  CAS  Google Scholar 

Gu Z, Eils R, Schlesner M (2016) Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32:2847–2849. https://doi.org/10.1093/BIOINFORMATICS/BTW313

Article  PubMed  CAS  Google Scholar 

Gulick RM, Lalezari J, Goodrich J et al (2008) Maraviroc for previously treated patients with R5 HIV-1 infection. N Engl J Med 359:1429–1441. https://doi.org/10.1056/NEJMOA0803152

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hall BE, Macdonald E, Cassidy M et al (2022) Transcriptomic analysis of human sensory neurons in painful diabetic neuropathy reveals inflammation and neuronal loss. Scientific Reports 2022 12:1 12:1–16. https://doi.org/10.1038/s41598-022-08100-8

Halvorsen EC, Hamilton MJ, Young A et al (2016) Maraviroc decreases CCL8-mediated migration of CCR5(+) regulatory T cells and reduces metastatic tumor growth in the lungs. Oncoimmunology 5:e1150398. https://doi.org/10.1080/2162402X.2016.1150398

Article  PubMed  PubMed Central  CAS  Google Scholar 

Horvath S, Zhang B, Carlson M et al (2006) Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target. Proc Natl Acad Sci U S A 103:17402–17407. https://doi.org/10.1073/PNAS.0608396103

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ino Y, Maruyama M, Shimizu M et al (2023) TSLP in DRG neurons causes the development of neuropathic pain through T cells. J Neuroinflammation 20. https://doi.org/10.1186/S12974-023-02882-Y

Ji RR, Xu ZZ, Gao YJ (2014) Emerging targets in neuroinflammation-driven chronic pain. Nat Rev Drug Discov 13:533–548. https://doi.org/10.1038/NRD4334

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ji RR, Nackley A, Huh Y et al (2018) Neuroinflammation and Central Sensitization in chronic and widespread Pain. Anesthesiology 129:343–366. https://doi.org/10.1097/ALN.0000000000002130

Article  PubMed  Google Scholar 

Kim D, Paggi JM, Park C et al (2019) Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37:907–915. https://doi.org/10.1038/S41587-019-0201-4

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kwiatkowski K, Piotrowska A, Rojewska E et al (2016) Beneficial properties of maraviroc on neuropathic pain development and opioid effectiveness in rats. Prog Neuropsychopharmacol Biol Psychiatry 64:68–78. https://doi.org/10.1016/J.PNPBP.2015.07.005

Article  PubMed  CAS  Google Scholar 

Lacroix-Fralish ML, Austin JS, Zheng FY et al (2011) Patterns of pain: meta-analysis of microarray studies of pain. Pain 152:1888–1898. https://doi.org/10.1016/J.PAIN.2011.04.014

Article  PubMed  Google Scholar 

Laedermann CJ, Pertin M, Suter MR, Decosterd I (2014) Voltage-gated sodium channel expression in mouse DRG after SNI leads to re-evaluation of projections of injured fibers. Mol Pain 10:19. https://doi.org/10.1186/1744-8069-10-19

Article  PubMed  PubMed Central  CAS  Google Scholar 

Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bi

留言 (0)

沒有登入
gif