Abdel Rasheed NO, El Sayed NS, El-Khatib AS (2018) Targeting central β2 receptors ameliorates streptozotocin-induced neuroinflammation via inhibition of glycogen synthase kinase3 pathway in mice. Prog Neuropsychopharmacol Biol Psychiatry 86:65–75. https://doi.org/10.1016/j.pnpbp.2018.05.010
Article PubMed CAS Google Scholar
Abdel Rasheed NO, Shiha NA, Mohamed SS, Ibrahim WW (2023) SIRT1/PARP-1/NLRP3 cascade as a potential target for niacin neuroprotective effect in lipopolysaccharide-induced depressive-like behavior in mice. Int Immunopharmacol 123:110720. https://doi.org/10.1016/j.intimp.2023.110720
Article PubMed CAS Google Scholar
Abdel-Salam OME, Mohammed NA, Sleem AA (2011) The effects of trimetazidine on lipopolysaccharide-induced oxidative stress in mice. EXCLI J 10:162–172
PubMed PubMed Central Google Scholar
Abou El-Ezz D, Maher A, Sallam N, El-Brairy A, Kenawy S (2018) Trans-cinnamaldehyde Modulates Hippocampal Nrf2 Factor and Inhibits Amyloid Beta Aggregation in LPS-Induced Neuroinflammation Mouse Model. Neurochem Res 43:2333–2342. https://doi.org/10.1007/s11064-018-2656-y
Article PubMed CAS Google Scholar
Afridi R, Suk K (2021) Neuroinflammatory Basis of Depression: Learning From Experimental Models. Front Cell Neurosci 15:691067. https://doi.org/10.3389/fncel.2021.691067
Article PubMed PubMed Central CAS Google Scholar
Ahmad S, Shah SA, Khan N, Nishan U, Jamila N, Alotaibi A (2023) A phytoconstituent 6-aminoflavone ameliorates lipopolysaccharide-induced oxidative stress mediated synapse and memory dysfunction via p-Akt/NF-kB pathway in albino mice. Open Chem 21(1):20220336
Arioz BI, Tastan B, Tarakcioglu E, Tufekci KU, Olcum M, Ersoy N, Bagriyanik A, Genc K, Genc S (2019) Melatonin Attenuates LPS-Induced Acute Depressive-Like Behaviors and Microglial NLRP3 Inflammasome Activation Through the SIRT1/Nrf2 Pathway. Front Immunol 10:1511. https://doi.org/10.3389/fimmu.2019.01511
Article PubMed PubMed Central CAS Google Scholar
Atilgan D, Parlaktas BS, Uluocak N, Erdemir F, Markoc F, Saylan O, Erkorkmaz U (2014) The effects of trimetazidine and sildenafil on bilateral cavernosal nerve injury induced oxidative damage and cavernosal fibrosis in rats. Sci World J 1:970363. https://doi.org/10.1155/2014/970363
Bian H, Wang G, Huang J, Liang L, Zheng Y, Wei Y, Wang H, Xiao L, Wang H (2020) Dihydrolipoic acid protects against lipopolysaccharide-induced behavioral deficits and neuroinflammation via regulation of Nrf2/HO-1/NLRP3 signaling in rat. J Neuroinflammation 17:166. https://doi.org/10.1186/s12974-020-01836-y
Article PubMed PubMed Central CAS Google Scholar
Bortolasci CC, Kidnapillai S, Spolding B, Truong TTT, Connor T, Swinton C, Panizzutti B, Liu ZSJ, Sanigorski A, Dean OM, Crowley T, Richardson M, Bozaoglu K, Vlahos K, Cowdery S, Watmuff B, Steyn SF, Wolmarans DW, Engelbrecht BJ, Perry C, Drummond K, Pang T, Jamain S, Gray L, McGee SL, Harvey BH, Kim JH, Leboyer M, Berk M, Walder K (2023) Use of a gene expression signature to identify trimetazidine for repurposing to treat bipolar depression. Bipolar Disord 25(8):661–70. https://doi.org/10.1111/bdi.13319
Article PubMed PubMed Central CAS Google Scholar
Chai H, Liu B, Zhan H, Li X, He Z, Ye J, Guo Q, Chen J, Zhang J, Li S (2019) Antidepressant Effects of Rhodomyrtone in Mice with Chronic Unpredictable Mild Stress-Induced Depression. Int J Neuropsychopharmacol 22:157–164. https://doi.org/10.1093/ijnp/pyy091
Article PubMed CAS Google Scholar
Ciesielska A, Matyjek M, Kwiatkowska K (2021) TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell Mol Life Sci 78:1233–1261. https://doi.org/10.1007/s00018-020-03656-y
Article PubMed CAS Google Scholar
Correia AS, Vale N (2024) Advancements Exploring Major Depressive Disorder: Insights on Oxidative Stress, Serotonin Metabolism, BDNF, HPA Axis Dysfunction, and Pharmacotherapy Advances. International J Transl Med 4:176–196. https://doi.org/10.3390/ijtm4010010
Correia AS, Cardoso A, Vale N (2023) Oxidative Stress in Depression: The Link with the Stress Response, Neuroinflammation, Serotonin. Neurogenesis and Synaptic Plasticity. Antioxidants (Basel) 12:470. https://doi.org/10.3390/antiox12020470
Article PubMed CAS Google Scholar
C.F.A. Culling, Handbook of Histopathological and Histochemical Techniques: Including Museum Techniques, Butterworth-Heinemann, 2013.
Daneman R, Prat A (2015) The blood-brain barrier. Cold Spring Harb Perspect Biol 7:a020412. https://doi.org/10.1101/cshperspect.a020412
Article PubMed PubMed Central Google Scholar
Dézsi CA (2016) Trimetazidine in Practice: Review of the Clinical and Experimental Evidence. Am J Ther 23:e871–e879. https://doi.org/10.1097/MJT.0000000000000180
Article PubMed PubMed Central Google Scholar
Dhote V, Balaraman R (2008) Anti-oxidant activity mediated neuroprotective potential of trimetazidine on focal cerebral ischaemia-reperfusion injury in rats. Clin Exp Pharmacol Physiol 35:630–637. https://doi.org/10.1111/j.1440-1681.2008.04845.x
Article PubMed CAS Google Scholar
Engin S, Barut EN, Yaşar YK, Soysal AÇ, Arıcı T, Kerimoğlu G, Kadıoğlu M, Sezen SF (2022) Trimetazidine attenuates cyclophosphamide-induced cystitis by inhibiting TLR4-mediated NFκB signaling in mice. Life Sci 301:120590. https://doi.org/10.1016/j.lfs.2022.120590
Article PubMed CAS Google Scholar
Evrensel A, Ünsalver BÖ, Ceylan ME (2020) Neuroinflammation, Gut-Brain Axis and Depression. Psychiatry Investig 17:2–8. https://doi.org/10.30773/pi.2019.08.09
Article PubMed CAS Google Scholar
Fang S, Wu Z, Guo Y, Zhu W, Wan C, Yuan N, Chen J, Hao W, Mo X, Guo X, Fan L, Li X, Chen J (2023) Roles of microglia in adult hippocampal neurogenesis in depression and their therapeutics. Front Immunol 14:1193053. https://doi.org/10.3389/fimmu.2023.1193053
Article PubMed PubMed Central CAS Google Scholar
Fries GR, Saldana VA, Finnstein J, Rein T (2023) Molecular pathways of major depressive disorder converge on the synapse. Mol Psychiatry 28:284–297. https://doi.org/10.1038/s41380-022-01806-1
Article PubMed CAS Google Scholar
Gad HA, Mansour M, Abbas H, Malatani RT, Khattab MA, Elmowafy E (2022) “Plurol will not miss the boat”: A new manifesto of galantamine conveyance. J Drug Deliv Sci Technol 74:103516. https://doi.org/10.1016/j.jddst.2022.103516
Gastfriend BD, Palecek SP, Shusta EV (2018) Modeling the blood-brain barrier: Beyond the endothelial cells. Curr Opin Biomed Eng 5:6–12. https://doi.org/10.1016/j.cobme.2017.11.002
Article PubMed PubMed Central Google Scholar
Goldsmith DR, Rapaport MH, Miller BJ (2016) A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Mol Psychiatry 21:1696–1709. https://doi.org/10.1038/mp.2016.3
Article PubMed PubMed Central CAS Google Scholar
Gong X, Hu H, Qiao Y, Xu P, Yang M, Dang R, Han W, Guo Y, Chen D, Jiang P (2019) The Involvement of Renin-Angiotensin System in Lipopolysaccharide-Induced Behavioral Changes, Neuroinflammation, and Disturbed Insulin Signaling. Front Pharmacol 10:318. https://doi.org/10.3389/fphar.2019.00318
Article PubMed PubMed Central CAS Google Scholar
Hu Y, Wang Z, Pan S, Zhang H, Fang M, Jiang H, Zhang H, Gao Z, K, Xu, Z, Li (2017) Melatonin protects against blood-brain barrier damage by inhibiting the TLR4/NF-КB signaling pathway after LPS treatment in neonatal rats. Oncotarget 8(19):31638
Huang X, Hussain B, Chang J (2021) Peripheral inflammation and blood-brain barrier disruption: effects and mechanisms. CNS Neurosci Ther 27:36–47. https://doi.org/10.1111/cns.13569
Article PubMed CAS Google Scholar
Ibrahim WW, Abdelkader NF, Ismail HM, Khattab MM (2019) Escitalopram Ameliorates Cognitive Impairment in D-Galactose-Injected Ovariectomized Rats: Modulation of JNK, GSK-3β, and ERK Signalling Pathways. Sci Rep 9:10056. https://doi.org/10.1038/s41598-019-46558-1
留言 (0)