Blocking Brain Myeloid Differentiation Factor 2-Toll-like Receptor 4 Signaling Improves Cognition by Diminishing Brain Pathologies and Preserving Adult Hippocampal Neurogenesis in Obese Rats

Amanollahi M, Jameie M, Heidari A, Rezaei N (2022) The dialogue between Neuroinflammation and Adult Neurogenesis: mechanisms involved and alterations in neurological diseases. Mol Neurobiol. https://doi.org/10.1007/s12035-022-03102-z

Article  PubMed  Google Scholar 

Boutagy NE, McMillan RP, Frisard MI, Hulver MW (2016) Metabolic endotoxemia with obesity: Is it real and is it relevant? Biochimie 124:11-20.10.1016/j.biochi.2015.06.020

Buchanan MM, Hutchinson M, Watkins LR, Yin H (2010) Toll-like receptor 4 in CNS pathologies. J Neurochem 114:13–27. https://doi.org/10.1111/j.1471-4159.2010.06736.x

Article  PubMed  PubMed Central  Google Scholar 

Chatterjee S (2016) Chapter two - oxidative stress, inflammation, and Disease. In: Dziubla T, Butterfield DA (eds) Oxidative stress and Biomaterials. Academic., pp 35–58. https://doi.org/10.1016/B978-0-12-803269-5.00002-4

Chen G, Zhang Y, Liu X, Fang Q, Wang Z, Fu L, Liu Z, Wang Y, Zhao Y, Li X, Liang G (2016) Discovery of a new inhibitor of myeloid differentiation 2 from Cinnamamide Derivatives with anti-inflammatory activity in Sepsis and Acute Lung Injury. J Med Chem 59:2436–2451. https://doi.org/10.1021/acs.jmedchem.5b01574

Article  PubMed  Google Scholar 

Chunchai T, Thunapong W, Yasom S, Wanchai K, Eaimworawuthikul S, Metzler G, Lungkaphin A, Pongchaidecha A, Sirilun S, Chaiyasut C, Pratchayasakul W, Thiennimitr P, Chattipakorn N, Chattipakorn SC (2018) Decreased microglial activation through gut-brain axis by prebiotics, probiotics, or synbiotics effectively restored cognitive function in obese-insulin resistant rats. J Neuroinflamm 15:22–33. https://doi.org/10.1186/s12974-018-1055-2

Article  Google Scholar 

Chunchai T, Chinchapo T, Sripetchwandee J, Thonusin C, Chattipakorn N, Chattipakorn SC (2024) Lipopolysaccharide exacerbates depressive-like behaviors in obese rats through complement C1q-mediated synaptic elimination by microglia. Acta Physiol 240:e14130. https://doi.org/10.1111/apha.14130

Article  Google Scholar 

Denninger JK, Smith BM, Kirby ED (2018) Novel Object Recognition and object location behavioral testing in mice on a Budget. J Vis Exp 1–10. https://doi.org/10.3791/58593

Eaimworawuthikul S, Tunapong W, Chunchai T, Yasom S, Wanchai K, Suntornsaratoon P, Charoenphandhu N, Thiennimitr P, Chattipakorn N, Chattipakorn SC (2019) Effects of probiotics, prebiotics or synbiotics on jawbone in obese-insulin resistant rats. Eur J Nutr 58:2801–2810. https://doi.org/10.1007/s00394-018-1829-4

Article  PubMed  Google Scholar 

Ellulu MS, Patimah I, Khaza’ai H, Rahmat A, Abed Y (2017) Obesity and inflammation: the linking mechanism and the complications. Archives Med Science: AMS 13:851–863. https://doi.org/10.5114/aoms.2016.58928

Article  Google Scholar 

Goldgaber D, Harris HW, Hla T, Maciag T, Donnelly RJ, Jacobsen JS, Vitek MP, Gajdusek DC (1989) Interleukin 1 regulates synthesis of amyloid beta-protein precursor mRNA in human endothelial cells. Proc Natl Acad Sci U S A 86:7606-7610.10.1073/pnas.86.19.7606

Jinawong K, Apaijai N, Wongsuchai S, Pratchayasakul W, Chattipakorn N, Chattipakorn SC (2020) Necrostatin-1 mitigates cognitive dysfunction in prediabetic rats with no alteration in insulin sensitivity. Diabetes 69:1411–1423. https://doi.org/10.2337/db19-1128

Article  PubMed  Google Scholar 

Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT (2018) Inflammation as a central mechanism in Alzheimer’s disease. Alzheimer’s Dement (New York N Y) 4:575–590. https://doi.org/10.1016/j.trci.2018.06.014

Article  Google Scholar 

Kothari V, Luo Y, Tornabene T, O’Neill AM, Greene MW, Geetha T, Babu JR (2017) High fat diet induces brain insulin resistance and cognitive impairment in mice. Biochim Biophys Acta Mol Basis Dis 1863:499-508.10.1016/j.bbadis.2016.10.006

Li S, You J, Wang Z, Liu Y, Wang B, Du M, Zou T (2021) Curcumin alleviates high-fat diet-induced hepatic steatosis and obesity in association with modulation of gut microbiota in mice. Food Res Int 143:110270. https://doi.org/10.1016/j.foodres.2021.110270

Article  PubMed  Google Scholar 

Liu Y, Dai Y, Li Q, Chen C, Chen H, Song Y, Hua F, Zhang Z (2020) Beta-amyloid activates NLRP3 inflammasome via TLR4 in mouse microglia. Neurosci Lett 736:135279. https://doi.org/10.1016/j.neulet.2020.135279

Article  PubMed  Google Scholar 

Lloret A, Monllor P, Esteve D, Cervera-Ferri A, Lloret A (2019) Obesity as a risk factor for Alzheimer’s Disease: implication of leptin and glutamate. Front NeuroSci 13:508. https://doi.org/10.3389/fnins.2019.00508.eCollection2019

Article  PubMed  PubMed Central  Google Scholar 

Moser VA, Uchoa MF, Pike CJ (2018) TLR4 inhibitor TAK-242 attenuates the adverse neural effects of diet-induced obesity. J Neuroinflammation 15:306. https://doi.org/10.1186/s12974-018-1340-0

Article  PubMed  PubMed Central  Google Scholar 

Mouihate A (2014) TLR4-mediated brain inflammation halts neurogenesis: impact of hormonal replacement therapy. Front Cell Neurosci 8:146. https://doi.org/10.3389/fncel.2014.00146

Article  PubMed  PubMed Central  Google Scholar 

Oo TT, Pratchayasakul W, Chattipakorn N, Chattipakorn SC (2020) Potential roles of myeloid differentiation factor 2 on Neuroinflammation and its possible interventions. Mol Neurobiol 57:4825–4844. https://doi.org/10.1007/s12035-020-02066-2

Article  PubMed  Google Scholar 

Oo TT, Sumneang N, Ongnok B, Arunsak B, Chunchai T, Kerdphoo S, Apaijai N, Pratchayasakul W, Liang G, Chattipakorn N, Chattipakorn SC (2022) L6H21 protects against cognitive impairment and brain pathologies via toll-like receptor 4-myeloid differentiation factor 2 signalling in prediabetic rats. Br J Pharmacol 179:1220–1236. https://doi.org/10.1111/bph.15741

Article  PubMed  Google Scholar 

Oo TT, Pratchayasakul W, Chattipakorn K, Siri-Angkul N, Choovuthayakorn J, Charumporn T, Ongnok B, Arunsak B, Chunchai T, Kongkaew A, Songtrai S, Kaewsuwan S, Chattipakorn N, Chattipakorn S (2024) Cyclosorus Terminans Extract Alleviates Neuroinflammation in Insulin Resistant Rats. Mol Neurobiol 61:4879-4890.10.1007/s12035-023-03883-x

Quintanilla RA, Orellana DI, González-Billault C, Maccioni RB (2004) Interleukin-6 induces Alzheimer-type phosphorylation of tau protein by deregulating the cdk5/p35 pathway. Experimental cell research 295:245-257.10.1016/j.yexcr.2004.01.002

Rogero MM, Calder PC (2018) Obesity, inflammation, toll-like receptor 4 and fatty acids. Nutrients 10:1–19. https://doi.org/10.3390/nu10040432

Article  Google Scholar 

Saiyasit N, Chunchai T, Prus D, Suparan K, Pittayapong P, Apaijai N, Pratchayasakul W, Sripetchwandee J, Chattipakorn MDPDN, Chattipakorn SC (2020) Gut dysbiosis develops before metabolic disturbance and cognitive decline in high-fat diet–induced obese condition. Nutrition 69:23–36. https://doi.org/10.1016/j.nut.2019.110576

Article  Google Scholar 

Saiyasit N, Chunchai T, Jaiwongkam T, Kerdphoo S, Apaijai N, Pratchayasakul W, Sripetchwandee J, Chattipakorn N, Chattipakorn SC (2021) Neurotensin receptor 1 agonist provides neuroprotection in pre-diabetic rats. J Endocrinol 248:59–74. https://doi.org/10.1530/joe-20-0439

Article  PubMed  Google Scholar 

Valero J, Bernardino L, Cardoso FL, Silva AP, Fontes-Ribeiro C, Ambrósio AF, Malva JO (2017) Impact of Neuroinflammation on hippocampal neurogenesis: relevance to aging and Alzheimer’s Disease. J Alzheimers Dis 60:S161–s168. https://doi.org/10.3233/jad-170239

Article  PubMed  Google Scholar 

Van Dyken P, Lacoste B (2018) Impact of metabolic syndrome on Neuroinflammation and the blood-brain barrier. Front NeuroSci 12:930–944. https://doi.org/10.3389/fnins.2018.00930

Article  PubMed  PubMed Central  Google Scholar 

Wadhwa M, Prabhakar A, Ray K, Roy K, Kumari P, Jha PK, Kishore K, Kumar S, Panjwani U (2017) Inhibiting the microglia activation improves the spatial memory and adult neurogenesis in rat hippocampus during 48 h of sleep deprivation. J Neuroinflamm 14:222. https://doi.org/10.1186/s12974-017-0998-z

Article  Google Scholar 

Wu J, Zhang Y, Cai Y, Wang J, Weng B, Tang Q, Chen X, Pan Z, Liang G, Yang S (2013) Discovery and evaluation of piperid-4-one-containing mono-carbonyl analogs of curcumin as anti-inflammatory agents. Bioorg Med Chem 21:3058–3065. https://doi.org/10.1016/j.bmc.2013.03.057

Article  PubMed  Google Scholar 

Zhang Y, Liang D, Dong L, Ge X, Xu F, Chen W, Dai Y, Li H, Zou P, Yang S, Liang G (2015) Anti-inflammatory effects of novel curcumin analogs in experimental acute lung injury. Respir Res 16:43–56. https://doi.org/10.1186/s12931-015-0199-1

Article  PubMed  PubMed Central  Google Scholar 

Zhang Y, Liu Z, Wu J, Bai B, Chen H, Xiao Z, Chen L, Zhao Y, Lum H, Wang Y, Zhang H, Liang G (2018) New MD2 inhibitors derived from curcumin with improved anti-inflammatory activity. Eur J Med Chem 148:291–305. https://doi.org/10.1016/j.ejmech.2018.02.008

Article  PubMed  Google Scholar 

Zhao C, Yang J, Wang Y, Liang D, Yang X, Li X, Wu J, Wu X, Yang S, Li X, Liang G (2010) Synthesis of mono-carbonyl analogues of curcumin and their effects on inhibition of cytokine release in LPS-stimulated RAW 264.7 macrophages. Bioorg Med Chem 18:2388–2393. https://doi.org/10.1016/j.bmc.2010.03.001

Article  PubMed  Google Scholar 

Zhou J, Yu W, Zhang M, Tian X, Li Y, Lü Y (2019) Imbalance of Microglial TLR4/TREM2 in LPS-Treated APP/PS1 transgenic mice: a potential link between Alzheimer’s Disease and systemic inflammation. Neurochem Res 44:1138–1151. https://doi.org/10.1007/s11064-019-02748-x

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif