Extracellular Vesicles from Mesenchymal Stem Cells Reverse Neuroinflammation and Restore Motor Coordination in Hyperammonemic Rats

Arenas YM, Balzano T, Ivaylova G, Llansola M, Felipo V (2022) The S1PR2-CCL2-BDNF-TrkB pathway mediates neuroinflammation and motor incoordination in hyperammonaemia. Neuropathol Appl Neurobiol 48(4):e12799. https://doi.org/10.1111/nan.12799

Article  PubMed  CAS  Google Scholar 

Bajaj JS, Barrett AC, Bortey E, Paterson C, Forbes WP (2015) Prolonged remission from hepatic encephalopathy with rifaximin: results of a placebo crossover analysis. Aliment Pharmacol Ther 41(1):39–45. https://doi.org/10.1111/apt.12993

Article  PubMed  CAS  Google Scholar 

Balzano T, Arenas YM, Dadsetan S et al (2020) Sustained hyperammonemia induces TNF-a IN Purkinje neurons by activating the TNFR1-NF-κB pathway. J Neuroinflammation 17(1):70. https://doi.org/10.1186/s12974-020-01746-z

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bass NM, Mullen KD, Sanyal A et al (2010) Rifaximin treatment in hepatic encephalopathy. N Engl J Med 362(12):1071–1081. https://doi.org/10.1056/NEJMoa0907893

Article  PubMed  CAS  Google Scholar 

Batrakova EV, Kim MS (2015) Using exosomes, naturally-equipped nanocarriers, for drug delivery. J Control Release 219:396–405. https://doi.org/10.1016/j.jconrel.2015.07.030

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bogdan C, Paik J, Vodovotz Y, Nathan C (1992) Contrasting mechanisms for suppression of macrophage cytokine release by transforming growth factor-beta and interleukin-10. J Biol Chem 267(32):23301–23308

Article  PubMed  CAS  Google Scholar 

Cabrera-Pastor A, Balzano T, Hernández-Rabaza V, Malaguarnera M, Llansola M, Felipo V (2018) Increasing extracellular cGMP in cerebellum in vivo reduces neuroinflammation, GABAergic tone and motor in-coordination in hyperammonemic rats. Brain Behav Immun 69:386–398. https://doi.org/10.1016/j.bbi.2017.12.013

Article  PubMed  CAS  Google Scholar 

Cabrera-Pastor A, Llansola M, Montoliu C et al (2019) Peripheral inflammation induces neuroinflammation that alters neurotransmission and cognitive and motor function in hepatic encephalopathy: underlying mechanisms and therapeutic implications. Acta Physiol (Oxf) 226(2):e13270. https://doi.org/10.1111/apha.13270

Article  PubMed  CAS  Google Scholar 

Castro B, Martinez-Redondo D, Gartzia I, Alonso-Varona A, Garrido P, Palomares T (2019) Cryopreserved H2O2 -preconditioned human adipose-derived stem cells exhibit fast post-thaw recovery and enhanced bioactivity against oxidative stress. J Tissue Eng Regen Med 2019(132):328–341. https://doi.org/10.1002/term.2797

Article  CAS  Google Scholar 

Cauli O, Mansouri MT, Agusti A, Felipo V (2009) Hyperammonemia increases GABAergic tone in the cerebellum but decreases it in the rat cortex. Gastroenterology 136(4):1359–1367 e1-2. https://doi.org/10.1053/j.gastro.2008.12.057

Article  PubMed  CAS  Google Scholar 

Chandok N, Watt KD (2010) Pain management in the cirrhotic patient: the clinical challenge. Mayo Clin Proc 85(5):451–458. https://doi.org/10.4065/mcp.2009.0534

Article  PubMed  PubMed Central  Google Scholar 

Cheng X, Jiang M, Long L, Meng J (2021) Potential roles of mesenchymal stem cells and their exosomes in the treatment of COVID-19. Front Biosci (Landmark Ed) 26(10):948–961. https://doi.org/10.52586/4999

Article  PubMed  CAS  Google Scholar 

Cossetti C, Iraci N, Mercer TR et al (2014) Extracellular vesicles from neural stem cells transfer IFN-γ via Ifngr1 to activate Stat1 signaling in target cells. Mol Cell 56(2):193–204. https://doi.org/10.1016/j.molcel.2014.08.020

Article  PubMed  PubMed Central  CAS  Google Scholar 

Elia CA, Losurdo M, Malosio ML, Coco S (2019) Extracellular vesicles from mesenchymal stem cells exert Pleiotropic effects on Amyloid-β, inflammation, and regeneration: a spark of Hope for Alzheimer’s disease from tiny structures? BioEssays 41(4):e1800199. https://doi.org/10.1002/bies.201800199

Article  PubMed  Google Scholar 

Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM (1998) Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 101(4):890–898. https://doi.org/10.1172/JCI1112

Article  PubMed  PubMed Central  CAS  Google Scholar 

Felipo V (2013) Hepatic encephalopathy: effects of liver failure on brain function. Nat Rev Neurosci 14(12):851–858. https://doi.org/10.1038/nrn3587

Article  PubMed  CAS  Google Scholar 

Felipo V, Miñana MD, Grisolía S (1988) Long term ingestion of ammonium increases acetylglutamate and urea levels without affecting the amount of carbamyl phosphate synthase. Eur J Biochem 176(3):567–571. https://doi.org/10.1111/j.1432-1033.1988.tb14315.x

Article  PubMed  CAS  Google Scholar 

Felipo V, Urios A, Montesinos E et al (2012) Contribution of hyperammonemia and inflammatory factors to cognitive impairment in minimal hepatic encephalopathy. Metab Brain Dis 27:51–58. https://doi.org/10.1007/s11011-011-9269-3

Article  PubMed  CAS  Google Scholar 

Gluud LL, Vilstrup H, Morgan MY (2016) Non-absorbable disaccharides versus placebo/no intervention and lactulose versus lactitol for the prevention and treatment of hepatic encephalopathy in people with cirrhosis. Cochrane Database Syst Rev 6(5):CD003044. https://doi.org/10.1002/14651858

Article  CAS  Google Scholar 

Gonzalez-Usano A, Cauli O, Agusti A, Felipo V (2014) Pregnenolone sulfate restores the glutamate-nitric-oxide-cGMP pathway and extracellular GABA in cerebellum and learning and motor coordination in hyperammonemic rats. ACS Chem Neurosci 5(2):100–105. https://doi.org/10.1021/cn400168y

Article  PubMed  CAS  Google Scholar 

Häussinger D, Dhiman RK, Felipo V et al (2022) Hepatic encephalopathy. Nat Rev Dis Primers 8(1):43. https://doi.org/10.1038/s41572-022-00366-6

Article  PubMed  Google Scholar 

Islam A, Choudhury ME, Kigami Y et al (2018) Sustained anti-inflammatory effects of TGF-β1 on microglia/macrophages. Biochim Biophys Acta Mol Basis Dis 1864(3):721–734. https://doi.org/10.1016/j.bbadis.2017.12.022

Article  PubMed  CAS  Google Scholar 

Izquierdo-Altarejos P, Cabrera-Pastor A, Martínez-García M, Sánchez-Huertas C, Hernández A, Moreno-Manzano V, Felipo V (2023) Extracellular vesicles from mesenchymal stem cells reduce neuroinflammation in hippocampus and restore cognitive function in hyperammonemic rats. J Neuroinflamm 20(1):1. https://doi.org/10.1186/s12974-022-02688-4

Article  CAS  Google Scholar 

Izquierdo-Altarejos P, Cabrera-Pastor A, Gonzalez-King H, Montoliu C, Felipo V Extracellular vesicles from Hyperammonemic rats induce Neuroinflammation and Motor Incoordination in Control rats. Cells 2020, 9(3), 572. https://doi.org/10.3390/cells9030572

Jafarinia M, Alsahebfosoul F, Salehi H, Eskandari N, Azimzadeh M, Mahmoodi M, Asgary S, Ganjalikhani Hakemi M (2020) Therapeutic effects of extracellular vesicles from human adipose-derived mesenchymal stem cells on chronic experimental autoimmune encephalomyelitis. J Cell Physiol 235(11):8779–8790. https://doi.org/10.1002/jcp.29721

Article  PubMed  CAS  Google Scholar 

Jiang M, Wang H, Jin M, Yang X, Ji H, Jiang Y, Zhang H, Wu F, Wu G, Lai X, Cai L, Hu R, Xu L, Li L (2018) Exosomes from MiR-30d-5p-ADSCs reverse Acute Ischemic Stroke-Induced, autophagy-mediated Brain Injury by promoting M2 Microglial/Macrophage polarization. Cellular physiology and biochemistry: international journal of experimental cellular physiology, biochemistry, and pharmacology. 47(2):864–878. https://doi.org/10.1159/000490078

Kirkham AM, Monaghan M, Bailey AJM et al (2021) Mesenchymal stromal cells as a therapeutic intervention for COVID-19: a living systematic review and meta-analysis protocol. Syst Rev 10(1):249. https://doi.org/10.1186/s13643-021-01803-5

Article  PubMed  PubMed Central  Google Scholar 

Lai P, Weng J, Guo L, Chen X, Du X (2019) Novel insights into MSC-EVs therapy for immune diseases. Biomark Res 7:6. https://doi.org/10.1186/s40364-019-0156-0

Article  PubMed  PubMed Central  Google Scholar 

Lee M, Liu T, Im W, Kim M (2016) Exosomes from adipose-derived stem cells ameliorate phenotype of Huntington’s disease in vitro model. Eur J Neurosci 44(4):2114–2119. https://doi.org/10.1111/ejn.13275

Article  PubMed  Google Scholar 

Long Q, Upadhya D, Hattiangady B et al (2017) Intranasal MSC-derived A1-exosomes ease inflammation, and prevent abnormal neurogenesis and memory dysfunction after status epilept

留言 (0)

沒有登入
gif