Arenas YM, Balzano T, Ivaylova G, Llansola M, Felipo V (2022) The S1PR2-CCL2-BDNF-TrkB pathway mediates neuroinflammation and motor incoordination in hyperammonaemia. Neuropathol Appl Neurobiol 48(4):e12799. https://doi.org/10.1111/nan.12799
Article PubMed CAS Google Scholar
Bajaj JS, Barrett AC, Bortey E, Paterson C, Forbes WP (2015) Prolonged remission from hepatic encephalopathy with rifaximin: results of a placebo crossover analysis. Aliment Pharmacol Ther 41(1):39–45. https://doi.org/10.1111/apt.12993
Article PubMed CAS Google Scholar
Balzano T, Arenas YM, Dadsetan S et al (2020) Sustained hyperammonemia induces TNF-a IN Purkinje neurons by activating the TNFR1-NF-κB pathway. J Neuroinflammation 17(1):70. https://doi.org/10.1186/s12974-020-01746-z
Article PubMed PubMed Central CAS Google Scholar
Bass NM, Mullen KD, Sanyal A et al (2010) Rifaximin treatment in hepatic encephalopathy. N Engl J Med 362(12):1071–1081. https://doi.org/10.1056/NEJMoa0907893
Article PubMed CAS Google Scholar
Batrakova EV, Kim MS (2015) Using exosomes, naturally-equipped nanocarriers, for drug delivery. J Control Release 219:396–405. https://doi.org/10.1016/j.jconrel.2015.07.030
Article PubMed PubMed Central CAS Google Scholar
Bogdan C, Paik J, Vodovotz Y, Nathan C (1992) Contrasting mechanisms for suppression of macrophage cytokine release by transforming growth factor-beta and interleukin-10. J Biol Chem 267(32):23301–23308
Article PubMed CAS Google Scholar
Cabrera-Pastor A, Balzano T, Hernández-Rabaza V, Malaguarnera M, Llansola M, Felipo V (2018) Increasing extracellular cGMP in cerebellum in vivo reduces neuroinflammation, GABAergic tone and motor in-coordination in hyperammonemic rats. Brain Behav Immun 69:386–398. https://doi.org/10.1016/j.bbi.2017.12.013
Article PubMed CAS Google Scholar
Cabrera-Pastor A, Llansola M, Montoliu C et al (2019) Peripheral inflammation induces neuroinflammation that alters neurotransmission and cognitive and motor function in hepatic encephalopathy: underlying mechanisms and therapeutic implications. Acta Physiol (Oxf) 226(2):e13270. https://doi.org/10.1111/apha.13270
Article PubMed CAS Google Scholar
Castro B, Martinez-Redondo D, Gartzia I, Alonso-Varona A, Garrido P, Palomares T (2019) Cryopreserved H2O2 -preconditioned human adipose-derived stem cells exhibit fast post-thaw recovery and enhanced bioactivity against oxidative stress. J Tissue Eng Regen Med 2019(132):328–341. https://doi.org/10.1002/term.2797
Cauli O, Mansouri MT, Agusti A, Felipo V (2009) Hyperammonemia increases GABAergic tone in the cerebellum but decreases it in the rat cortex. Gastroenterology 136(4):1359–1367 e1-2. https://doi.org/10.1053/j.gastro.2008.12.057
Article PubMed CAS Google Scholar
Chandok N, Watt KD (2010) Pain management in the cirrhotic patient: the clinical challenge. Mayo Clin Proc 85(5):451–458. https://doi.org/10.4065/mcp.2009.0534
Article PubMed PubMed Central Google Scholar
Cheng X, Jiang M, Long L, Meng J (2021) Potential roles of mesenchymal stem cells and their exosomes in the treatment of COVID-19. Front Biosci (Landmark Ed) 26(10):948–961. https://doi.org/10.52586/4999
Article PubMed CAS Google Scholar
Cossetti C, Iraci N, Mercer TR et al (2014) Extracellular vesicles from neural stem cells transfer IFN-γ via Ifngr1 to activate Stat1 signaling in target cells. Mol Cell 56(2):193–204. https://doi.org/10.1016/j.molcel.2014.08.020
Article PubMed PubMed Central CAS Google Scholar
Elia CA, Losurdo M, Malosio ML, Coco S (2019) Extracellular vesicles from mesenchymal stem cells exert Pleiotropic effects on Amyloid-β, inflammation, and regeneration: a spark of Hope for Alzheimer’s disease from tiny structures? BioEssays 41(4):e1800199. https://doi.org/10.1002/bies.201800199
Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM (1998) Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 101(4):890–898. https://doi.org/10.1172/JCI1112
Article PubMed PubMed Central CAS Google Scholar
Felipo V (2013) Hepatic encephalopathy: effects of liver failure on brain function. Nat Rev Neurosci 14(12):851–858. https://doi.org/10.1038/nrn3587
Article PubMed CAS Google Scholar
Felipo V, Miñana MD, Grisolía S (1988) Long term ingestion of ammonium increases acetylglutamate and urea levels without affecting the amount of carbamyl phosphate synthase. Eur J Biochem 176(3):567–571. https://doi.org/10.1111/j.1432-1033.1988.tb14315.x
Article PubMed CAS Google Scholar
Felipo V, Urios A, Montesinos E et al (2012) Contribution of hyperammonemia and inflammatory factors to cognitive impairment in minimal hepatic encephalopathy. Metab Brain Dis 27:51–58. https://doi.org/10.1007/s11011-011-9269-3
Article PubMed CAS Google Scholar
Gluud LL, Vilstrup H, Morgan MY (2016) Non-absorbable disaccharides versus placebo/no intervention and lactulose versus lactitol for the prevention and treatment of hepatic encephalopathy in people with cirrhosis. Cochrane Database Syst Rev 6(5):CD003044. https://doi.org/10.1002/14651858
Gonzalez-Usano A, Cauli O, Agusti A, Felipo V (2014) Pregnenolone sulfate restores the glutamate-nitric-oxide-cGMP pathway and extracellular GABA in cerebellum and learning and motor coordination in hyperammonemic rats. ACS Chem Neurosci 5(2):100–105. https://doi.org/10.1021/cn400168y
Article PubMed CAS Google Scholar
Häussinger D, Dhiman RK, Felipo V et al (2022) Hepatic encephalopathy. Nat Rev Dis Primers 8(1):43. https://doi.org/10.1038/s41572-022-00366-6
Islam A, Choudhury ME, Kigami Y et al (2018) Sustained anti-inflammatory effects of TGF-β1 on microglia/macrophages. Biochim Biophys Acta Mol Basis Dis 1864(3):721–734. https://doi.org/10.1016/j.bbadis.2017.12.022
Article PubMed CAS Google Scholar
Izquierdo-Altarejos P, Cabrera-Pastor A, Martínez-García M, Sánchez-Huertas C, Hernández A, Moreno-Manzano V, Felipo V (2023) Extracellular vesicles from mesenchymal stem cells reduce neuroinflammation in hippocampus and restore cognitive function in hyperammonemic rats. J Neuroinflamm 20(1):1. https://doi.org/10.1186/s12974-022-02688-4
Izquierdo-Altarejos P, Cabrera-Pastor A, Gonzalez-King H, Montoliu C, Felipo V Extracellular vesicles from Hyperammonemic rats induce Neuroinflammation and Motor Incoordination in Control rats. Cells 2020, 9(3), 572. https://doi.org/10.3390/cells9030572
Jafarinia M, Alsahebfosoul F, Salehi H, Eskandari N, Azimzadeh M, Mahmoodi M, Asgary S, Ganjalikhani Hakemi M (2020) Therapeutic effects of extracellular vesicles from human adipose-derived mesenchymal stem cells on chronic experimental autoimmune encephalomyelitis. J Cell Physiol 235(11):8779–8790. https://doi.org/10.1002/jcp.29721
Article PubMed CAS Google Scholar
Jiang M, Wang H, Jin M, Yang X, Ji H, Jiang Y, Zhang H, Wu F, Wu G, Lai X, Cai L, Hu R, Xu L, Li L (2018) Exosomes from MiR-30d-5p-ADSCs reverse Acute Ischemic Stroke-Induced, autophagy-mediated Brain Injury by promoting M2 Microglial/Macrophage polarization. Cellular physiology and biochemistry: international journal of experimental cellular physiology, biochemistry, and pharmacology. 47(2):864–878. https://doi.org/10.1159/000490078
Kirkham AM, Monaghan M, Bailey AJM et al (2021) Mesenchymal stromal cells as a therapeutic intervention for COVID-19: a living systematic review and meta-analysis protocol. Syst Rev 10(1):249. https://doi.org/10.1186/s13643-021-01803-5
Article PubMed PubMed Central Google Scholar
Lai P, Weng J, Guo L, Chen X, Du X (2019) Novel insights into MSC-EVs therapy for immune diseases. Biomark Res 7:6. https://doi.org/10.1186/s40364-019-0156-0
Article PubMed PubMed Central Google Scholar
Lee M, Liu T, Im W, Kim M (2016) Exosomes from adipose-derived stem cells ameliorate phenotype of Huntington’s disease in vitro model. Eur J Neurosci 44(4):2114–2119. https://doi.org/10.1111/ejn.13275
Long Q, Upadhya D, Hattiangady B et al (2017) Intranasal MSC-derived A1-exosomes ease inflammation, and prevent abnormal neurogenesis and memory dysfunction after status epilept
留言 (0)