Zhang P. Decidual vasculopathy and spiral artery remodeling revisited II: relations to trophoblastic dependent and independent vascular transformation. J Maternal-Fetal Neonatal Med. 2020;1–7. https://doi.org/10.1080/14767058.2020.1718646.
Mori M, Bogdan A, Balassa T, Csabai T, Szekeres-Bartho J. The decidua-the maternal bed embracing the embryo-maintains the pregnancy. Semin Immunopathol. 2016;38:635–49. https://doi.org/10.1007/s00281-016-0574-0.
Article PubMed PubMed Central Google Scholar
Wu HM, Chen LH, Hsu LT, Lai CH. Immune Tolerance of embryo implantation and pregnancy: the role of human decidual stromal cell- and embryonic-derived extracellular vesicles. Int J Mol Sci. 2022;23. https://doi.org/10.3390/ijms232113382.
Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M, Meyer KB, Park JE, Stephenson E, Polański K, Goncalves A, et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. 2018;563:347–53. https://doi.org/10.1038/s41586-018-0698-6.
Article CAS PubMed PubMed Central Google Scholar
Staff AC, Fjeldstad HE, Fosheim IK, Moe K, Turowski G, Johnsen GM, Alnaes-Katjavivi P, Sugulle M. Failure of physiological transformation and spiral artery atherosis: their roles in preeclampsia. Am J Obstet Gynecol. 2022;226:S895–906. https://doi.org/10.1016/j.ajog.2020.09.026.
Article CAS PubMed Google Scholar
Du L, Deng W, Zeng S, Xu P, Huang L, Liang Y, Wang Y, Xu H, Tang J, Bi S, et al. Single-cell transcriptome analysis reveals defective decidua stromal niche attributes to recurrent spontaneous abortion. Cell Prolif. 2021;54:e13125. https://doi.org/10.1111/cpr.13125.
Article CAS PubMed PubMed Central Google Scholar
Audette MC, Kingdom JC. Screening for fetal growth restriction and placental insufficiency. Semin Fetal Neonatal Med. 2018;23:119–25. https://doi.org/10.1016/j.siny.2017.11.004.
Levine RJ, Maynard SE, Qian C, Lim K-H, England LJ, Yu KF, Schisterman EF, Thadhani R, Sachs BP, Epstein FH, et al. Circulating angiogenic factors and the risk of Preeclampsia. N Engl J Med. 2004;350:672–83. https://doi.org/10.1056/NEJMoa031884.
Article CAS PubMed Google Scholar
Rana S, Lemoine E, Granger JP, Karumanchi SA, Preeclampsia. Pathophysiology, challenges, and perspectives. Circ Res. 2019;124:1094–112. https://doi.org/10.1161/circresaha.118.313276.
Article CAS PubMed Google Scholar
Conrad KP, Rabaglino MB, Post Uiterweer ED. Emerging role for dysregulated decidualization in the genesis of preeclampsia. Placenta. 2017;60:119–29. https://doi.org/10.1016/j.placenta.2017.06.005.
Article CAS PubMed PubMed Central Google Scholar
Albrecht ED, Babischkin JS, Aberdeen GW, Burch MG, Pepe GJ. Maternal systemic vascular dysfunction in a primate model of defective uterine spiral artery remodeling. Am J Physiol Heart Circ Physiol. 2021;320:H1712–23. https://doi.org/10.1152/ajpheart.00613.2020.
Article CAS PubMed PubMed Central Google Scholar
Wu P, Haththotuwa R, Kwok CS, Babu A, Kotronias RA, Rushton C, Zaman A, Fryer AA, Kadam U, Chew-Graham CA, et al. Preeclampsia and Future Cardiovascular Health: a systematic review and Meta-analysis. Circ Cardiovasc Qual Outcomes. 2017;10. https://doi.org/10.1161/circoutcomes.116.003497.
Khan B, Allah Yar R, Khakwani AK, Karim S, Arslan Ali H. Preeclampsia Incidence and its maternal and neonatal outcomes with Associated Risk factors. Cureus. 2022;14:e31143. https://doi.org/10.7759/cureus.31143.
Article PubMed PubMed Central Google Scholar
Garrido-Gómez T, Castillo-Marco N, Cordero T, Simón C. Decidualization resistance in the origin of preeclampsia. Am J Obstet Gynecol. 2022;226:S886–94. https://doi.org/10.1016/j.ajog.2020.09.039.
Article CAS PubMed Google Scholar
Garrido-Gomez T, Quiñonero A, Dominguez F, Rubert L, Perales A, Hajjar KA, Simon C. Preeclampsia: a defect in decidualization is associated with deficiency of annexin A2. Am J Obstet Gynecol. 2020;222:376e371. 376.e317.
Garrido-Gomez T, Castillo-Marco N, Clemente-Ciscar M, Cordero T, Muñoz-Blat I, Amadoz A, Jimenez-Almazan J, Monfort-Ortiz R, Climent R, Perales-Marin A, et al. Disrupted PGR-B and ESR1 signaling underlies defective decidualization linked to severe preeclampsia. Elife. 2021;10. https://doi.org/10.7554/eLife.70753.
Yang M, Li H, Rong M, Zhang H, Hou L, Zhang C. Dysregulated GLUT1 may be involved in the pathogenesis of preeclampsia by impairing decidualization. Mol Cell Endocrinol. 2022;540:111509. https://doi.org/10.1016/j.mce.2021.111509.
Article CAS PubMed Google Scholar
Stevens DU, de Nobrega Teixeira JA, Spaanderman MEA, Bulten J, van Vugt JMG, Al-Nasiry. Understanding decidual vasculopathy and the link to preeclampsia: a review. Placenta. 2020;97:95–100. https://doi.org/10.1016/j.placenta.2020.06.020.
Article CAS PubMed Google Scholar
Ma Q, Beal JR, Bhurke A, Kannan A, Yu J, Taylor RN, Bagchi IC, Bagchi MK. Extracellular vesicles secreted by human uterine stromal cells regulate decidualization, angiogenesis, and trophoblast differentiation. Proc Natl Acad Sci U S A. 2022;119:e2200252119. https://doi.org/10.1073/pnas.2200252119.
Article CAS PubMed PubMed Central Google Scholar
Maas JW, Groothuis PG, Dunselman GA, de Goeij AF, Struyker Boudier HA, Evers JL. Endometrial angiogenesis throughout the human menstrual cycle. Hum Reprod. 2001;16:1557–61. https://doi.org/10.1093/humrep/16.8.1557.
Article CAS PubMed Google Scholar
Rogers PA, Donoghue JF, Walter LM, Girling JE. Endometrial angiogenesis, vascular maturation, and lymphangiogenesis. Reprod Sci. 2009;16:147–51. https://doi.org/10.1177/1933719108325509.
Chen W, Lu S, Yang C, Li N, Chen X, He J, Liu X, Ding Y, Tong C, Peng C, et al. Hyperinsulinemia restrains endometrial angiogenesis during decidualization in early pregnancy. J Endocrinol. 2019;243:137–48. https://doi.org/10.1530/joe-19-0127.
Article CAS PubMed Google Scholar
Ahn J, Yoon MJ, Hong SH, Cha H, Lee D, Koo HS, Ko JE, Lee J, Oh S, Jeon NL, et al. Three-dimensional microengineered vascularised endometrium-on-a-chip. Hum Reprod. 2021;36:2720–31. https://doi.org/10.1093/humrep/deab186.
Article CAS PubMed PubMed Central Google Scholar
Gnecco JS, Pensabene V, Li DJ, Ding T, Hui EE, Bruner-Tran KL, Osteen KG. Compartmentalized Culture of Perivascular Stroma and endothelial cells in a microfluidic model of the human endometrium. Ann Biomed Eng. 2017;45:1758–69. https://doi.org/10.1007/s10439-017-1797-5.
Article PubMed PubMed Central Google Scholar
Duran CL, Abbey CA, Bayless KJ. Establishment of a three-dimensional model to study human uterine angiogenesis. Mol Hum Reprod. 2018;24:74–93. https://doi.org/10.1093/molehr/gax064.
Article CAS PubMed Google Scholar
Binder NK, Evans J, Salamonsen LA, Gardner DK, Kaitu’u-Lino TuJ, Hannan NJ. Placental growth factor is secreted by the human endometrium and has potential important functions during embryo development and implantation. PLoS ONE. 2016;11:e0163096. https://doi.org/10.1371/journal.pone.0163096.
Article CAS PubMed PubMed Central Google Scholar
Nejabati HR, Latifi Z, Ghasemnejad T, Fattahi A, Nouri M. Placental growth factor (PlGF) as an angiogenic/inflammatory switcher: lesson from early pregnancy losses. Gynecol Endocrinol. 2017;33:668–74. https://doi.org/10.1080/09513590.2017.1318375.
Article CAS PubMed Google Scholar
Ruggiero D, Nutile T, Nappo S, Tirozzi A, Bellenguez C, Leutenegger AL, Ciullo M. Genetics of PlGF plasma levels highlights a role of its receptors and supports the link between angiogenesis and immunity. Sci Rep. 2021;11:16821. https://doi.org/10.1038/s41598-021-96256-0.
Article CAS PubMed PubMed Central Google Scholar
Dewerchin M, Carmeliet P. PlGF: a multitasking cytokine with disease-restricted activity. Cold Spring Harb Perspect Med. 2012;2. https://doi.org/10.1101/cshperspect.a011056.
Li X, Jin Q, Yao Q, Zhou Y, Zou Y, Li Z, Zhang S, Tu C. Placental growth factor contributes to liver inflammation, angiogenesis, fibrosis in mice by promoting hepatic macrophage recruitment and activation. Front Immunol. 2017;8:801. https://doi.org/10.3389/fimmu.2017.00801.
留言 (0)