Comparative Neuroprotective Potential of Nanoformulated and Free Resveratrol Against Cuprizone-Induced Demyelination in Rats

Praet J, Guglielmetti C, Berneman Z, Van der Linden A, Ponsaerts P (2014) Cellular and molecular neuropathology of the cuprizone mouse model: clinical relevance for multiple sclerosis. Neurosci Biobehav Rev 47:485–505

Article  CAS  PubMed  Google Scholar 

Ibrahim FG (2023) Sulforaphane, an Nrf-2 agonist, modulates oxidative stress and inflammation in a rat model of cuprizone-induced cardiotoxicity and hepatotoxicity. Cardiovasc Toxicol 23(1):46–60. https://doi.org/10.1007/s12012-022-09776-0

Article  CAS  Google Scholar 

Wang P, Tian W, Song J, Guan Y, Miao Y (2011) Deficiency of NG2+ cells contributes to the susceptibility of stroke-prone spontaneously hypertensive rats. CNS Neurosci 17:327–332

Article  CAS  Google Scholar 

Sanadgol N, Golab F, Tashakkor Z, Taki N, MoradiKouchi S, Mostafaie A, Mehdizadeh M, Abdollahi M et al (2017) Neuroprotective effects of ellagic acid on cuprizone-induced acute demyelination through limitation of microgliosis, adjustment of CXCL12/IL-17/IL-11 axis and restriction of mature oligodendrocytes apoptosis. Pharm Biol 55(1):1679–1687

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim W, Hahn K, Jung H, Kwon H, Nam S et al (2019) Melatonin ameliorates cuprizone-induced reduction of hippocampal neurogenesis, brain-derived neurotrophic factor, and phosphorylation of cyclic AMP response element-binding protein in the mouse dentate gyrus. Brain Behav 9:e01388

Article  PubMed  PubMed Central  Google Scholar 

Kawachi I, Lassmann H (2017) Neurodegeneration in multiple sclerosis and neuromyelitis optica. J Neurol Neurosurg Psychiatry 88:137

Article  PubMed  Google Scholar 

Toomey L, Papini M, Lins B et al (2021) Cuprizone feed formulation influences the extent of demyelinating disease pathology. Sci Re 11:2259. https://doi.org/10.1038/s41598-021-01963-3

Article  CAS  Google Scholar 

Adamo A, Paez P, Cabrera O, Wolfson M, Franco P, Pasquini JM, Soto EF (2006) Remyelination after cuprizone-induced demyelination in the rat is stimulated by apotransferrin. Exp Neurol 198(2):519–529

Article  CAS  PubMed  Google Scholar 

Hochstrasser T, Exner G, Nyamoya S, Schmitz C, Kipp M (2017) Cuprizone-containing pellets are less potent to induce consistent demyelination in the corpus callosum of C57BL/6 mice. J Mol Neurosci 61:617–624. https://doi.org/10.1007/s12031-017-0903-3

Article  CAS  PubMed  Google Scholar 

Zhen W, Liu A, Lu J, Zhang W, Tattersall D et al (2017) An alternative cuprizone-induced demyelination and remyelination mouse model. ASN Neuro 9(4):1759091417725174

Article  PubMed  PubMed Central  Google Scholar 

Khan M, Ahmad A, Ishrat T, Khan M, Hoda M, Khuwaja G, Shadab Raza S, Khan A et al (2010) Resveratrol attenuates 6-hydroxydopamine-induced oxidative damage and dopamine depletion in rat model of Parkinson’s disease. Brain Res 1328:139–151

Article  CAS  PubMed  Google Scholar 

Bambini-Junior V, Zanatta G, Nunes G, de Melo G, Michels M, Fontes-Dutra M, Nogueira Freire V, Riesgo R et al (2014) Resveratrol prevents social deficits in animal model of autism induced by valproic acid. Neurosci Lett 583:176–181

Article  CAS  PubMed  Google Scholar 

Shamsher E, Khan RS, Davis BM, Dine K, Luong V, Somavarapu S, Cordeiro MF, Shindler KS (2023) Nanoparticles enhance solubility and neuroprotective effects of resveratrol in demyelinating disease. Neurotherapeutics 20(4):1138–1153

Article  CAS  PubMed  PubMed Central  Google Scholar 

Orallo F (2006) Comparative studies of the antioxidant effects of cis- and trans-resveratrol. Curr Med Chem 13:87–98. https://doi.org/10.2174/092986706775197962

Article  CAS  PubMed  Google Scholar 

Nakata R, Takahashi S, Inoue H (2012) Recent advances in the study on resveratrol. Biol Pharm Bull 35(3):273–279

Article  CAS  PubMed  Google Scholar 

Jardim F, de Rossi F, Nascimento M, da Silva Barros R, Borges P, IC Prescilio, MR de Oliveira (2018) Resveratrol and brain mitochondria: a review. Mol Neurobiology 55(3):2085–101

Moussa C, Hebron M, Huang X, Ahn J, Rissman R, Aisenet P, Turneral R (2017) Resveratrol regulates neuroinflammation and induces adaptive immunity in Alzheimer’s disease. J Neuroinflamm 14–1. https://doi.org/10.1186/s12974-016-0779-0

Amri A, Chaumeil J, Sfar S, Charrueau C (2012) Administration of resveratrol: what formulation solutions to bioavailability limitations? J Control Release 158(2):182–193

Article  CAS  PubMed  Google Scholar 

Francioso A, Mastromarino P, Masci A, d’Erme M, Mosca L (2014) Chemistry, stability and bioavailability of resveratrol. Med Chem 10(3):237–245

Article  PubMed  Google Scholar 

Timmers S, Auwerx J, Schrauwen P (2012) The journey of resveratrol from yeast to human. Aging 4:146–158

Article  PubMed  PubMed Central  Google Scholar 

Santos A, Pereira I, Pereira-Silva M, Ferreira L, Caldas M, Collado-González M, Magalhães M, Figueiras A et al (2019) Nanotechnology-based formulations for resveratrol delivery: effects on resveratrol in vivo bioavailability and bioactivity. Colloids Surf, B 180:127–140

Article  CAS  Google Scholar 

Ashafaq M, Alam M, Khan A, Islam F, Khuwaja G et al (2021) Nanoparticles of resveratrol attenuates oxidative stress and inflammation after ischemic stroke in rats. Int Immunopharmacol 94:107494

Article  CAS  PubMed  Google Scholar 

Bhowmik A, Khan R, Ghosh M (2015) Blood brain barrier: a challenge for effectual therapy of brain tumors. Biomed Res Int 320941. https://doi.org/10.1155/2015/320941

Huang Y, Zhang B, Xie S, Yang B, Xu Q, Tan J (2016) Superparamagnetic iron oxide nanoparticles modified with tween 80 pass through the intact blood–brain barrier in rats under magnetic field. ACS Appl Mater Interfaces 8(18):11336–41

Article  CAS  PubMed  Google Scholar 

Abbott N, Romero I (1996) Transporting therapeutics across the blood-brain barrier. Mol Med Today 2(3):106–113

Article  CAS  PubMed  Google Scholar 

Masserini M (2013) Nanoparticles for brain drug delivery. ISRN Biochem 238428. https://doi.org/10.1155/2013/238428

Hao J, Zhao J, Zhang S, Tong T, Zhuang Q, Kai J, Wei C, Hua T (2016) Fabrication of an ionic-sensitive in situ gel loaded with resveratrol nanosuspensions intended for direct nose-to-brain delivery. Colloids Surf, B 147:376–386

Article  CAS  Google Scholar 

Ethemoglu M, Seker F, Akkaya H, Kilic E, Aslan I, Erdogan CS, Yilmaz B (2017) Anticonvulsant activity of resveratrol-loaded liposomes in vivo. Neuroscience 357:12–19. https://doi.org/10.1016/j.neuroscience.2017.05.026

Article  CAS  PubMed  Google Scholar 

Trotta V, Pavan B, Ferraro L, Beggiato S, Traini D, Gomes Des Reis L, Scalia S, Dalpiaz A (2018) Brain targeting of resveratrol by nasal administration of chitosan-coated lipid microparticles. Eur J Pharm Biopharm 127:250–259. https://doi.org/10.1016/j.ejpb.2018.02.010

Article  CAS  PubMed  Google Scholar 

Shen Z, Wu A, Chen X (2017) Iron oxide nanoparticle based contrast agents for magnetic resonance imaging. Mol Pharm 14(5):1352–1364

Article  CAS  PubMed  Google Scholar 

Ibrahim FG, Mabrouk M, El-Sayed SA, Rizk MZ, Beherei HH (2023) Neurotherapeutic efficacy of loaded sulforaphane on iron oxide nanoparticles against cuprizone-induced neurotoxicity: role of MMP-9 and S100β. Toxicol Mech Methods 33(6):463–479

Article  Google Scholar 

Mohammed L, Gomaa H, Ragab D, Zhu J (2017) Magnetic nanoparticles for environmental and biomedical applications: a review. Particuology 30:1–14

Article  CAS  Google Scholar 

Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L, Bernardino L (2016) Nanoparticle-mediated brain drug delivery: overcoming blood–brain barrier to treat neurodegenerative diseases. J Control Release 235:34–47

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif