Praet J, Guglielmetti C, Berneman Z, Van der Linden A, Ponsaerts P (2014) Cellular and molecular neuropathology of the cuprizone mouse model: clinical relevance for multiple sclerosis. Neurosci Biobehav Rev 47:485–505
Article CAS PubMed Google Scholar
Ibrahim FG (2023) Sulforaphane, an Nrf-2 agonist, modulates oxidative stress and inflammation in a rat model of cuprizone-induced cardiotoxicity and hepatotoxicity. Cardiovasc Toxicol 23(1):46–60. https://doi.org/10.1007/s12012-022-09776-0
Wang P, Tian W, Song J, Guan Y, Miao Y (2011) Deficiency of NG2+ cells contributes to the susceptibility of stroke-prone spontaneously hypertensive rats. CNS Neurosci 17:327–332
Sanadgol N, Golab F, Tashakkor Z, Taki N, MoradiKouchi S, Mostafaie A, Mehdizadeh M, Abdollahi M et al (2017) Neuroprotective effects of ellagic acid on cuprizone-induced acute demyelination through limitation of microgliosis, adjustment of CXCL12/IL-17/IL-11 axis and restriction of mature oligodendrocytes apoptosis. Pharm Biol 55(1):1679–1687
Article CAS PubMed PubMed Central Google Scholar
Kim W, Hahn K, Jung H, Kwon H, Nam S et al (2019) Melatonin ameliorates cuprizone-induced reduction of hippocampal neurogenesis, brain-derived neurotrophic factor, and phosphorylation of cyclic AMP response element-binding protein in the mouse dentate gyrus. Brain Behav 9:e01388
Article PubMed PubMed Central Google Scholar
Kawachi I, Lassmann H (2017) Neurodegeneration in multiple sclerosis and neuromyelitis optica. J Neurol Neurosurg Psychiatry 88:137
Toomey L, Papini M, Lins B et al (2021) Cuprizone feed formulation influences the extent of demyelinating disease pathology. Sci Re 11:2259. https://doi.org/10.1038/s41598-021-01963-3
Adamo A, Paez P, Cabrera O, Wolfson M, Franco P, Pasquini JM, Soto EF (2006) Remyelination after cuprizone-induced demyelination in the rat is stimulated by apotransferrin. Exp Neurol 198(2):519–529
Article CAS PubMed Google Scholar
Hochstrasser T, Exner G, Nyamoya S, Schmitz C, Kipp M (2017) Cuprizone-containing pellets are less potent to induce consistent demyelination in the corpus callosum of C57BL/6 mice. J Mol Neurosci 61:617–624. https://doi.org/10.1007/s12031-017-0903-3
Article CAS PubMed Google Scholar
Zhen W, Liu A, Lu J, Zhang W, Tattersall D et al (2017) An alternative cuprizone-induced demyelination and remyelination mouse model. ASN Neuro 9(4):1759091417725174
Article PubMed PubMed Central Google Scholar
Khan M, Ahmad A, Ishrat T, Khan M, Hoda M, Khuwaja G, Shadab Raza S, Khan A et al (2010) Resveratrol attenuates 6-hydroxydopamine-induced oxidative damage and dopamine depletion in rat model of Parkinson’s disease. Brain Res 1328:139–151
Article CAS PubMed Google Scholar
Bambini-Junior V, Zanatta G, Nunes G, de Melo G, Michels M, Fontes-Dutra M, Nogueira Freire V, Riesgo R et al (2014) Resveratrol prevents social deficits in animal model of autism induced by valproic acid. Neurosci Lett 583:176–181
Article CAS PubMed Google Scholar
Shamsher E, Khan RS, Davis BM, Dine K, Luong V, Somavarapu S, Cordeiro MF, Shindler KS (2023) Nanoparticles enhance solubility and neuroprotective effects of resveratrol in demyelinating disease. Neurotherapeutics 20(4):1138–1153
Article CAS PubMed PubMed Central Google Scholar
Orallo F (2006) Comparative studies of the antioxidant effects of cis- and trans-resveratrol. Curr Med Chem 13:87–98. https://doi.org/10.2174/092986706775197962
Article CAS PubMed Google Scholar
Nakata R, Takahashi S, Inoue H (2012) Recent advances in the study on resveratrol. Biol Pharm Bull 35(3):273–279
Article CAS PubMed Google Scholar
Jardim F, de Rossi F, Nascimento M, da Silva Barros R, Borges P, IC Prescilio, MR de Oliveira (2018) Resveratrol and brain mitochondria: a review. Mol Neurobiology 55(3):2085–101
Moussa C, Hebron M, Huang X, Ahn J, Rissman R, Aisenet P, Turneral R (2017) Resveratrol regulates neuroinflammation and induces adaptive immunity in Alzheimer’s disease. J Neuroinflamm 14–1. https://doi.org/10.1186/s12974-016-0779-0
Amri A, Chaumeil J, Sfar S, Charrueau C (2012) Administration of resveratrol: what formulation solutions to bioavailability limitations? J Control Release 158(2):182–193
Article CAS PubMed Google Scholar
Francioso A, Mastromarino P, Masci A, d’Erme M, Mosca L (2014) Chemistry, stability and bioavailability of resveratrol. Med Chem 10(3):237–245
Timmers S, Auwerx J, Schrauwen P (2012) The journey of resveratrol from yeast to human. Aging 4:146–158
Article PubMed PubMed Central Google Scholar
Santos A, Pereira I, Pereira-Silva M, Ferreira L, Caldas M, Collado-González M, Magalhães M, Figueiras A et al (2019) Nanotechnology-based formulations for resveratrol delivery: effects on resveratrol in vivo bioavailability and bioactivity. Colloids Surf, B 180:127–140
Ashafaq M, Alam M, Khan A, Islam F, Khuwaja G et al (2021) Nanoparticles of resveratrol attenuates oxidative stress and inflammation after ischemic stroke in rats. Int Immunopharmacol 94:107494
Article CAS PubMed Google Scholar
Bhowmik A, Khan R, Ghosh M (2015) Blood brain barrier: a challenge for effectual therapy of brain tumors. Biomed Res Int 320941. https://doi.org/10.1155/2015/320941
Huang Y, Zhang B, Xie S, Yang B, Xu Q, Tan J (2016) Superparamagnetic iron oxide nanoparticles modified with tween 80 pass through the intact blood–brain barrier in rats under magnetic field. ACS Appl Mater Interfaces 8(18):11336–41
Article CAS PubMed Google Scholar
Abbott N, Romero I (1996) Transporting therapeutics across the blood-brain barrier. Mol Med Today 2(3):106–113
Article CAS PubMed Google Scholar
Masserini M (2013) Nanoparticles for brain drug delivery. ISRN Biochem 238428. https://doi.org/10.1155/2013/238428
Hao J, Zhao J, Zhang S, Tong T, Zhuang Q, Kai J, Wei C, Hua T (2016) Fabrication of an ionic-sensitive in situ gel loaded with resveratrol nanosuspensions intended for direct nose-to-brain delivery. Colloids Surf, B 147:376–386
Ethemoglu M, Seker F, Akkaya H, Kilic E, Aslan I, Erdogan CS, Yilmaz B (2017) Anticonvulsant activity of resveratrol-loaded liposomes in vivo. Neuroscience 357:12–19. https://doi.org/10.1016/j.neuroscience.2017.05.026
Article CAS PubMed Google Scholar
Trotta V, Pavan B, Ferraro L, Beggiato S, Traini D, Gomes Des Reis L, Scalia S, Dalpiaz A (2018) Brain targeting of resveratrol by nasal administration of chitosan-coated lipid microparticles. Eur J Pharm Biopharm 127:250–259. https://doi.org/10.1016/j.ejpb.2018.02.010
Article CAS PubMed Google Scholar
Shen Z, Wu A, Chen X (2017) Iron oxide nanoparticle based contrast agents for magnetic resonance imaging. Mol Pharm 14(5):1352–1364
Article CAS PubMed Google Scholar
Ibrahim FG, Mabrouk M, El-Sayed SA, Rizk MZ, Beherei HH (2023) Neurotherapeutic efficacy of loaded sulforaphane on iron oxide nanoparticles against cuprizone-induced neurotoxicity: role of MMP-9 and S100β. Toxicol Mech Methods 33(6):463–479
Mohammed L, Gomaa H, Ragab D, Zhu J (2017) Magnetic nanoparticles for environmental and biomedical applications: a review. Particuology 30:1–14
Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L, Bernardino L (2016) Nanoparticle-mediated brain drug delivery: overcoming blood–brain barrier to treat neurodegenerative diseases. J Control Release 235:34–47
留言 (0)