Scheltens P, De Strooper B, Kivipelto M, Holstege H, Chételat G, Teunissen CE, Cummings J, van der Flier WM (2021) Alzheimer’s disease. Lancet 397(10284):1577–1590
Article CAS PubMed PubMed Central Google Scholar
Armstrong RA (2019) Risk factors for Alzheimer’s disease. Folia Neuropathol 57(2):87–105
Breijyeh Z, Karaman R (2020) Comprehensive review on Alzheimer’s disease: causes and treatment. Molecules 25(24):5789
Article CAS PubMed PubMed Central Google Scholar
Armstrong RA (2009) The molecular biology of senile plaques and neurofibrillary tangles in Alzheimer’s disease. Folia Neuropathol 47(4):289–299
Tamagno E, Guglielmotto M, Vasciaveo V, Tabaton M (2021) Oxidative stress and beta amyloid in Alzheimer’s disease Which comes first: the chicken or the egg? Antioxidants 10(9):1479
Article CAS PubMed PubMed Central Google Scholar
Emilsson L, Saetre P, Balciuniene J, Castensson A, Cairns N, Jazin EE (2002) Increased monoamine oxidase messenger RNA expression levels in frontal cortex of Alzheimer’s disease patients. Neurosci Lett 326(1):56–60
Article CAS PubMed Google Scholar
Gulyás B, Pavlova E, Kása P, Gulya K, Bakota L, Várszegi S, Keller E, Horváth MC et al (2011) Activated MAO-B in the brain of Alzheimer patients, demonstrated by [11C]-L-deprenyl using whole hemisphere autoradiography. Neurochem Int 58(1):60–68
Rahman K (2007) Studies on free radicals, antioxidants, and co-factors. Clin Interv Aging 2(2):219–236
CAS PubMed PubMed Central Google Scholar
Carter SF, Schöll M, Almkvist O, Wall A, Engler H, Långström B, Nordberg A (2012) Evidence for astrocytosis in prodromal Alzheimer disease provided by 11C-deuterium-L-deprenyl: a multitracer PET paradigm combining 11C-Pittsburgh compound B and 18F-FDG. J Nucl Med 53(1):37–46
Article CAS PubMed Google Scholar
Behl T, Kaur D, Sehgal A, Singh S, Sharma N, Zengin G, Andronie-Cioara FL, Toma MM et al (2021) Role of monoamine oxidase activity in Alzheimer’s disease: an insight into the therapeutic potential of inhibitors. Molecules 26(12):3724
Waters CH, Sethi KD, Hauser RA, Molho E, Bertoni JM (2004) Zydis selegiline reduces off time in Parkinson’s disease patients with motor fluctuations: a 3-month, randomized, placebo-controlled study. Mov Disord 19(4):426–432
Pu Y, Qian F, Guo J, Sha Y, Qian Y (2022) Selegiline protects against lipopolysaccharide (LPS)–induced impairment of the blood–brain barrier through regulating the NF-κB/MLCK/p-MLC signaling pathway. Neurotox Res 40(1):267–275
Article CAS PubMed Google Scholar
Magyar K, Szende B (2004) (−)-Deprenyl, a selective MAO-B inhibitor, with apoptotic and anti-apoptotic properties. Neurotoxicology 25(1–2):233–242
Article CAS PubMed Google Scholar
Wu Y, Kazumura K, Maruyama W, Osawa T, Naoi M (2015) Rasagiline and selegiline suppress calcium efflux from mitochondria by PK11195-induced opening of mitochondrial permeability transition pore: a novel anti-apoptotic function for neuroprotection. J Neural Transm 122:1399–1407
Article CAS PubMed Google Scholar
Abdanipour A, Mirzaei M, Anarkooli IJ, Mohammadi P (2023) Effect of selegiline as a monomine oxidase B inhibitor on the expression of neurotrophin mRNA levels in a contusion rat model of spinal cord injury. Neurol Res 45(3):241–247
Article CAS PubMed Google Scholar
Gyárfás T, Knuuttila J, Lindholm P, Rantamäki T, Castrén E (2010) Regulation of brain-derived neurotrophic factor (BDNF) and cerebral dopamine neurotrophic factor (CDNF) by anti-parkinsonian drug therapy in vivo. Cell Mol Neurobiol 30:361–368
Amini-Khoei H, Saghaei E, Mobini G-R, Sabzevary-Ghahfarokhi M, Ahmadi R, Bagheri N, Mokhtari T (2019) Possible involvement of PI3K/AKT/mTOR signaling pathway in the protective effect of selegiline (deprenyl) against memory impairment following ischemia reperfusion in rat. Neuropeptides 77:101942
Article CAS PubMed Google Scholar
Knoll J (1989) The pharmacology of selegiline ((−) deprenyl) New aspects. Acta Neurologica Scandinavica 80:83–91
Soliman GF, Hashem G, Fawzy MG, Ibrahim W (2019) Neuroprotective effects of metformin versus selegiline on Parkinson’s disease model by reserpine through the interrelation of α synuclein and antioxidants on behavioral changes in rats. Egypt J Basic Clin Pharmacol 9
Maia F, Pitombeira B, Araujo D, Cunha G, Viana G (2004) l-Deprenyl prevents lipid peroxidation and memory deficits produced by cerebral ischemia in rats. Cell Mol Neurobiol 24:87–100
Article CAS PubMed Google Scholar
Goverdhan P, Sravanthi A, Mamatha T (2012) Neuroprotective effects of meloxicam and selegiline in scopolamine-induced cognitive impairment and oxidative stress. Int J Alzheimer’s Disease 2012:974013
Wahdan SA, Tadros MG, Khalifa AE (2017) Antioxidant and antiapoptotic actions of selegiline protect against 3-NP-induced neurotoxicity in rats. Naunyn-Schmiedeberg’s Arch Pharmacol 390:905–917
Zhu J, Hamm R, Reeves T, Povlishock J, Phillips L (2000) Postinjury administration of L-deprenyl improves cognitive function and enhances neuroplasticity after traumatic brain injury. Exp Neurol 166(1):136–152
Article CAS PubMed Google Scholar
Ahmari M, Sharafi A, Mahmoudi J, Jafari-Anarkoli I, Gharbavi M, Hosseini M-J (2020) Selegiline (l-deprenyl) mitigated oxidative stress, cognitive abnormalities, and histopathological change in rats: alternative therapy in transient global ischemia. J Mol Neurosci 70:1639–1648
Article CAS PubMed Google Scholar
Amiri A, Noorbala AA, Nejatisafa AA, Ghoreishi A, Derakhshan MK, Khodaie-Ardakani MR, Hajiazim M et al (2008) Efficacy of selegiline add on therapy to risperidone in the treatment of the negative symptoms of schizophrenia: a double-blind randomized placebo-controlled study. Hum Psychopharmacol Clin Exp 23(2):79–86
Gerlach M, Youdim M, Riederer P (1996) Pharmacology of selegiline. Neurology 47 (6_suppl_3) 137S-145S
LI G (1964) Monoamine oxidase inhibitors Adverse reactions and possible mechanisms. JAMA 190:456–462
Ishikawa T, Okano M, Minami A, Tsunekawa H, Satoyoshi H, Tsukamoto Y, Takahata K et al (2019) Selegiline ameliorates depression-like behaviors in rodents and modulates hippocampal dopaminergic transmission and synaptic plasticity. Behav Brain Res 359:353–361
Pazini AM, Gomes GM, Villarinho JG, Da Cunha C, Pinheiro F, Ferreira AP, Mello CF, Ferreira J et al (2013) Selegiline reverses Aβ 25–35-induced cognitive deficit in male mice. Neurochem Res 38:2287–2294
Sano M, Ernesto C, Thomas RG, Klauber MR, Schafer K, Grundman M, Woodbury P, Growdon J et al (1997) A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. N Engl J Med 336(17):1216–1222
Thomas T (2000) Monoamine oxidase-B inhibitors in the treatment of Alzheimers disease. Neurobiol Aging 21(2):343–348
Article CAS PubMed Google Scholar
Tsunekawa H, Noda Y, Mouri A, Yoneda F, Nabeshima T (2008) Synergistic effects of selegiline and donepezil on cognitive impairment induced by amyloid beta (25–35). Behav Brain Res 190(2):224–232
Article CAS PubMed Google Scholar
Wilcock G, Birks J, Whitehead A, Evans SJG (2002) The effect of selegiline in the treatment of people with Alzheimer’s disease: a meta-analysis of published trials. Int J Geriatr Psychiatry 17(2):175–183
Article CAS PubMed Google Scholar
Arib O, Rat P, Molimard R, Chait A, Faure P, de Beaurepaire R (2010) Electrophysiological characterization of harmane-induced activation of mesolimbic dopamine neurons. Eur J Pharmacol 629(1–3):47–52
Article CAS PubMed Google Scholar
Bickford P, Adams C, Boyson S, Curella P, Gerhardt G, Heron C, Ivy G, Lin A et al (1997) Long-term treatment of male F344 rats with deprenyl: assessment of effects on longevity, behavior, and brain function. Neurobiol Aging 18(3):309–318
Carrillo M, Kanai S, Sato Y, Nokubo M, Ivy G, Kitani K (1993) The optimal dosage of (−) deprenyl for increasing superoxide dismutase activities in several brain regions decreases with age in male Fischer 344 rats. Life Sci 52(24):1925–1934
Article CAS PubMed Google Scholar
Carrillo M, Kitani K, Kanai S, Sato Y, Ivy G, Miyasaka K (1996) Long term treatment with (−) deprenyl reduces the optimal dose as well as the effective dose range for increasing antioxidant enzyme activities in old mouse brain. Life Sci 59(13):1047–1057
Article CAS PubMed Google Scholar
Muralikrishnan D, Samantaray S, Mohanakumar KP (2003) D-deprenyl protects nigrostriatal neurons against 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced dopaminergic neurotoxicity. Synapse 50(1):7–13
Article CAS PubMed Google Scholar
Zhang F, Lu J, Zhang J-g, Xie J-x (2015) Protective effects of a polysaccharide from Spirulina platensis on dopaminergic neurons in an MPTP-induced Parkinson’s disease model in C57BL/6J mice. Neural Regen Res 10(2):308–313
留言 (0)