Selegiline Improves Cognitive Impairment in the Rat Model of Alzheimer’s Disease

Scheltens P, De Strooper B, Kivipelto M, Holstege H, Chételat G, Teunissen CE, Cummings J, van der Flier WM (2021) Alzheimer’s disease. Lancet 397(10284):1577–1590

Article  CAS  PubMed  PubMed Central  Google Scholar 

Armstrong RA (2019) Risk factors for Alzheimer’s disease. Folia Neuropathol 57(2):87–105

Article  Google Scholar 

Breijyeh Z, Karaman R (2020) Comprehensive review on Alzheimer’s disease: causes and treatment. Molecules 25(24):5789

Article  CAS  PubMed  PubMed Central  Google Scholar 

Armstrong RA (2009) The molecular biology of senile plaques and neurofibrillary tangles in Alzheimer’s disease. Folia Neuropathol 47(4):289–299

CAS  PubMed  Google Scholar 

Tamagno E, Guglielmotto M, Vasciaveo V, Tabaton M (2021) Oxidative stress and beta amyloid in Alzheimer’s disease Which comes first: the chicken or the egg? Antioxidants 10(9):1479

Article  CAS  PubMed  PubMed Central  Google Scholar 

Emilsson L, Saetre P, Balciuniene J, Castensson A, Cairns N, Jazin EE (2002) Increased monoamine oxidase messenger RNA expression levels in frontal cortex of Alzheimer’s disease patients. Neurosci Lett 326(1):56–60

Article  CAS  PubMed  Google Scholar 

Gulyás B, Pavlova E, Kása P, Gulya K, Bakota L, Várszegi S, Keller E, Horváth MC et al (2011) Activated MAO-B in the brain of Alzheimer patients, demonstrated by [11C]-L-deprenyl using whole hemisphere autoradiography. Neurochem Int 58(1):60–68

Rahman K (2007) Studies on free radicals, antioxidants, and co-factors. Clin Interv Aging 2(2):219–236

CAS  PubMed  PubMed Central  Google Scholar 

Carter SF, Schöll M, Almkvist O, Wall A, Engler H, Långström B, Nordberg A (2012) Evidence for astrocytosis in prodromal Alzheimer disease provided by 11C-deuterium-L-deprenyl: a multitracer PET paradigm combining 11C-Pittsburgh compound B and 18F-FDG. J Nucl Med 53(1):37–46

Article  CAS  PubMed  Google Scholar 

Behl T, Kaur D, Sehgal A, Singh S, Sharma N, Zengin G, Andronie-Cioara FL, Toma MM et al (2021) Role of monoamine oxidase activity in Alzheimer’s disease: an insight into the therapeutic potential of inhibitors. Molecules 26(12):3724

Waters CH, Sethi KD, Hauser RA, Molho E, Bertoni JM (2004) Zydis selegiline reduces off time in Parkinson’s disease patients with motor fluctuations: a 3-month, randomized, placebo-controlled study. Mov Disord 19(4):426–432

Article  PubMed  Google Scholar 

Pu Y, Qian F, Guo J, Sha Y, Qian Y (2022) Selegiline protects against lipopolysaccharide (LPS)–induced impairment of the blood–brain barrier through regulating the NF-κB/MLCK/p-MLC signaling pathway. Neurotox Res 40(1):267–275

Article  CAS  PubMed  Google Scholar 

Magyar K, Szende B (2004) (−)-Deprenyl, a selective MAO-B inhibitor, with apoptotic and anti-apoptotic properties. Neurotoxicology 25(1–2):233–242

Article  CAS  PubMed  Google Scholar 

Wu Y, Kazumura K, Maruyama W, Osawa T, Naoi M (2015) Rasagiline and selegiline suppress calcium efflux from mitochondria by PK11195-induced opening of mitochondrial permeability transition pore: a novel anti-apoptotic function for neuroprotection. J Neural Transm 122:1399–1407

Article  CAS  PubMed  Google Scholar 

Abdanipour A, Mirzaei M, Anarkooli IJ, Mohammadi P (2023) Effect of selegiline as a monomine oxidase B inhibitor on the expression of neurotrophin mRNA levels in a contusion rat model of spinal cord injury. Neurol Res 45(3):241–247

Article  CAS  PubMed  Google Scholar 

Gyárfás T, Knuuttila J, Lindholm P, Rantamäki T, Castrén E (2010) Regulation of brain-derived neurotrophic factor (BDNF) and cerebral dopamine neurotrophic factor (CDNF) by anti-parkinsonian drug therapy in vivo. Cell Mol Neurobiol 30:361–368

Article  PubMed  Google Scholar 

Amini-Khoei H, Saghaei E, Mobini G-R, Sabzevary-Ghahfarokhi M, Ahmadi R, Bagheri N, Mokhtari T (2019) Possible involvement of PI3K/AKT/mTOR signaling pathway in the protective effect of selegiline (deprenyl) against memory impairment following ischemia reperfusion in rat. Neuropeptides 77:101942

Article  CAS  PubMed  Google Scholar 

Knoll J (1989) The pharmacology of selegiline ((−) deprenyl) New aspects. Acta Neurologica Scandinavica 80:83–91

Article  Google Scholar 

Soliman GF, Hashem G, Fawzy MG, Ibrahim W (2019) Neuroprotective effects of metformin versus selegiline on Parkinson’s disease model by reserpine through the interrelation of α synuclein and antioxidants on behavioral changes in rats. Egypt J Basic Clin Pharmacol 9

Maia F, Pitombeira B, Araujo D, Cunha G, Viana G (2004) l-Deprenyl prevents lipid peroxidation and memory deficits produced by cerebral ischemia in rats. Cell Mol Neurobiol 24:87–100

Article  CAS  PubMed  Google Scholar 

Goverdhan P, Sravanthi A, Mamatha T (2012) Neuroprotective effects of meloxicam and selegiline in scopolamine-induced cognitive impairment and oxidative stress. Int J Alzheimer’s Disease 2012:974013

Google Scholar 

Wahdan SA, Tadros MG, Khalifa AE (2017) Antioxidant and antiapoptotic actions of selegiline protect against 3-NP-induced neurotoxicity in rats. Naunyn-Schmiedeberg’s Arch Pharmacol 390:905–917

Article  CAS  Google Scholar 

Zhu J, Hamm R, Reeves T, Povlishock J, Phillips L (2000) Postinjury administration of L-deprenyl improves cognitive function and enhances neuroplasticity after traumatic brain injury. Exp Neurol 166(1):136–152

Article  CAS  PubMed  Google Scholar 

Ahmari M, Sharafi A, Mahmoudi J, Jafari-Anarkoli I, Gharbavi M, Hosseini M-J (2020) Selegiline (l-deprenyl) mitigated oxidative stress, cognitive abnormalities, and histopathological change in rats: alternative therapy in transient global ischemia. J Mol Neurosci 70:1639–1648

Article  CAS  PubMed  Google Scholar 

Amiri A, Noorbala AA, Nejatisafa AA, Ghoreishi A, Derakhshan MK, Khodaie-Ardakani MR, Hajiazim M et al (2008) Efficacy of selegiline add on therapy to risperidone in the treatment of the negative symptoms of schizophrenia: a double-blind randomized placebo-controlled study. Hum Psychopharmacol Clin Exp 23(2):79–86

Gerlach M, Youdim M, Riederer P (1996) Pharmacology of selegiline. Neurology 47 (6_suppl_3) 137S-145S

LI G (1964) Monoamine oxidase inhibitors Adverse reactions and possible mechanisms. JAMA 190:456–462

Google Scholar 

Ishikawa T, Okano M, Minami A, Tsunekawa H, Satoyoshi H, Tsukamoto Y, Takahata K et al (2019) Selegiline ameliorates depression-like behaviors in rodents and modulates hippocampal dopaminergic transmission and synaptic plasticity. Behav Brain Res 359:353–361

Pazini AM, Gomes GM, Villarinho JG, Da Cunha C, Pinheiro F, Ferreira AP, Mello CF, Ferreira J et al (2013) Selegiline reverses Aβ 25–35-induced cognitive deficit in male mice. Neurochem Res 38:2287–2294

Sano M, Ernesto C, Thomas RG, Klauber MR, Schafer K, Grundman M, Woodbury P, Growdon J et al (1997) A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. N Engl J Med 336(17):1216–1222

Thomas T (2000) Monoamine oxidase-B inhibitors in the treatment of Alzheimers disease. Neurobiol Aging 21(2):343–348

Article  CAS  PubMed  Google Scholar 

Tsunekawa H, Noda Y, Mouri A, Yoneda F, Nabeshima T (2008) Synergistic effects of selegiline and donepezil on cognitive impairment induced by amyloid beta (25–35). Behav Brain Res 190(2):224–232

Article  CAS  PubMed  Google Scholar 

Wilcock G, Birks J, Whitehead A, Evans SJG (2002) The effect of selegiline in the treatment of people with Alzheimer’s disease: a meta-analysis of published trials. Int J Geriatr Psychiatry 17(2):175–183

Article  CAS  PubMed  Google Scholar 

Arib O, Rat P, Molimard R, Chait A, Faure P, de Beaurepaire R (2010) Electrophysiological characterization of harmane-induced activation of mesolimbic dopamine neurons. Eur J Pharmacol 629(1–3):47–52

Article  CAS  PubMed  Google Scholar 

Bickford P, Adams C, Boyson S, Curella P, Gerhardt G, Heron C, Ivy G, Lin A et al (1997) Long-term treatment of male F344 rats with deprenyl: assessment of effects on longevity, behavior, and brain function. Neurobiol Aging 18(3):309–318

Carrillo M, Kanai S, Sato Y, Nokubo M, Ivy G, Kitani K (1993) The optimal dosage of (−) deprenyl for increasing superoxide dismutase activities in several brain regions decreases with age in male Fischer 344 rats. Life Sci 52(24):1925–1934

Article  CAS  PubMed  Google Scholar 

Carrillo M, Kitani K, Kanai S, Sato Y, Ivy G, Miyasaka K (1996) Long term treatment with (−) deprenyl reduces the optimal dose as well as the effective dose range for increasing antioxidant enzyme activities in old mouse brain. Life Sci 59(13):1047–1057

Article  CAS  PubMed  Google Scholar 

Muralikrishnan D, Samantaray S, Mohanakumar KP (2003) D-deprenyl protects nigrostriatal neurons against 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced dopaminergic neurotoxicity. Synapse 50(1):7–13

Article  CAS  PubMed  Google Scholar 

Zhang F, Lu J, Zhang J-g, Xie J-x (2015) Protective effects of a polysaccharide from Spirulina platensis on dopaminergic neurons in an MPTP-induced Parkinson’s disease model in C57BL/6J mice. Neural Regen Res 10(2):308–313

Article  CAS  PubMed 

留言 (0)

沒有登入
gif