Neurons Specialize in Presynaptic Autophagy: A Perspective to Ameliorate Neurodegeneration

Cheng X-T, Huang N, Sheng Z-H (2022) Programming axonal mitochondrial maintenance and bioenergetics in neurodegeneration and regeneration. Neuron 110:1899–1923. https://doi.org/10.1016/j.neuron.2022.03.015

Article  CAS  PubMed  PubMed Central  Google Scholar 

DiRocco RJ, Hall WG (1981) Metabolic neural mapping in neonatal rats. J Neurosci Res 6:13–19. https://doi.org/10.1002/JNR.490060103

Article  CAS  PubMed  Google Scholar 

Camandola S, Mattson MP (2017) Brain metabolism in health, aging, and neurodegeneration. EMBO J 36:1474–1492. https://doi.org/10.15252/embj.201695810

Article  CAS  PubMed  PubMed Central  Google Scholar 

Birdsall V, Waites CL (2019) Autophagy at the synapse. Neurosci Lett 697:24–28. https://doi.org/10.1016/J.NEULET.2018.05.033

Article  CAS  PubMed  Google Scholar 

Guedes-Dias P, Holzbaur ELF (2019) Axonal transport: driving synaptic function. Science (1979) 366:eaaw9997. https://doi.org/10.1126/science.aaw9997

Article  CAS  Google Scholar 

Sun C, Nold A, Fusco CM et al (2021) The prevalence and specificity of local protein synthesis during neuronal synaptic plasticity. Sci Adv 7:eabj0790. https://doi.org/10.1126/SCIADV.ABJ0790/SUPPL_FILE/SCIADV.ABJ0790_SM.PDF

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burke WJ, Chung HD, Huang JS et al (1988) Evidence for retrograde degeneration of epinephrine neurons in Alzheimer’s disease. Ann Neurol 24:532–536. https://doi.org/10.1002/ANA.410240409

Article  CAS  PubMed  Google Scholar 

Burke RE, O’Malley K (2013) Axon degeneration in Parkinson’s disease. Exp Neurol 246:72–83

Article  CAS  PubMed  Google Scholar 

Li H, Li SH, Yu ZX et al (2001) Huntingtin aggregate-associated axonal degeneration is an early pathological event in Huntington’s disease mice. J Neurosci 21:8473–8481. https://doi.org/10.1523/JNEUROSCI.21-21-08473.2001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mishra AK, Dixit A (2022) Dopaminergic axons: key recitalists in Parkinson’s disease. Neurochem Res 47:234–248. https://doi.org/10.1007/s11064-021-03464-1

Article  CAS  PubMed  Google Scholar 

Yang S, Park D, Manning L et al (2022) Presynaptic autophagy is coupled to the synaptic vesicle cycle via ATG-9. Neuron 110:824-840.e10. https://doi.org/10.1016/j.neuron.2021.12.031

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lüningschrör P, Sendtner M (2018) Autophagy in the presynaptic compartment. Curr Opin Neurobiol 51:80–85. https://doi.org/10.1016/J.CONB.2018.02.023

Article  PubMed  Google Scholar 

Shen W, Ganetzky B (2009) Autophagy promotes synapse development in Drosophila. J Cell Biol 187:71–79. https://doi.org/10.1083/jcb.200907109

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bowling H, Klann E (2014) Shaping dendritic spines in autism spectrum disorder: mTORC1-dependent macroautophagy. Neuron 83:994–996. https://doi.org/10.1016/j.neuron.2014.08.021

Article  CAS  PubMed  Google Scholar 

Tang G, Gudsnuk K, Kuo SH et al (2014) Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron 83:1131–1143. https://doi.org/10.1016/J.NEURON.2014.07.040

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hernandez-Diaz S, Ghimire S, Sanchez-Mirasierra I et al (2022) Endophilin-B regulates autophagy during synapse development and neurodegeneration. Neurobiol Dis 163:105595. https://doi.org/10.1016/J.NBD.2021.105595

Article  CAS  PubMed  Google Scholar 

Negrete-Hurtado A, Overhoff M, Bera S et al (2020) Autophagy lipidation machinery regulates axonal microtubule dynamics but is dispensable for survival of mammalian neurons. Nat Commun 11:1535. https://doi.org/10.1038/S41467-020-15287-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mishra AK, Mishra S, Rajput C et al (2018) Cypermethrin activates autophagosome formation albeit inhibits autophagy owing to poor lysosome quality: relevance to Parkinson’s disease. Neurotox Res 33:377–387. https://doi.org/10.1007/S12640-017-9800-3

Article  CAS  PubMed  Google Scholar 

Maday S (2016) Mechanisms of neuronal homeostasis: autophagy in the axon. Brain Res 1649:143–150. https://doi.org/10.1016/J.BRAINRES.2016.03.047

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stavoe AKH, Holzbaur ELF (2019) Autophagy in neurons. Annu Rev Cell Dev Biol 35:477–500. https://doi.org/10.1146/ANNUREV-CELLBIO-100818-125242

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xie W, Wan OW, Chung KKK (2010) New insights into the role of mitochondrial dysfunction and protein aggregation in Parkinson’s disease. Biochim Biophys Acta (BBA) - Mol Basis Dis 1802:935–941. https://doi.org/10.1016/j.bbadis.2010.07.014

Article  CAS  Google Scholar 

Wang X, Wang W, Li L et al (2014) Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim Biophys Acta (BBA) - Mol Basis Dis 1842:1240–1247. https://doi.org/10.1016/j.bbadis.2013.10.015

Article  CAS  Google Scholar 

Hollis F, Kanellopoulos AK, Bagni C (2017) Mitochondrial dysfunction in autism spectrum disorder: clinical features and perspectives. Curr Opin Neurobiol 45:178–187. https://doi.org/10.1016/j.conb.2017.05.018

Article  CAS  PubMed  Google Scholar 

Shacham T, Sharma N, Lederkremer GZ (2019) Protein misfolding and ER stress in Huntington’s disease. Front Mol Biosci 6:20. https://doi.org/10.3389/fmolb.2019.00020

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakamura T, Lipton SA (2010) Redox regulation of mitochondrial fission, protein misfolding, synaptic damage, and neuronal cell death: potential implications for Alzheimer’s and Parkinson’s diseases. Apoptosis 15:1354–1363. https://doi.org/10.1007/s10495-010-0476-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pérez-Torres EJ, Utkina-Sosunova I, Mishra V et al (2022) Retromer dysfunction in amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 119:e2118755119. https://doi.org/10.1073/pnas.2118755119

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wong YC, Holzbaur ELF (2014) The regulation of autophagosome dynamics by huntingtin and HAP1 is disrupted by expression of mutant huntingtin, leading to defective cargo degradation. J Neurosci 34:1293–1305. https://doi.org/10.1523/JNEUROSCI.1870-13.2014

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif