Cheng X-T, Huang N, Sheng Z-H (2022) Programming axonal mitochondrial maintenance and bioenergetics in neurodegeneration and regeneration. Neuron 110:1899–1923. https://doi.org/10.1016/j.neuron.2022.03.015
Article CAS PubMed PubMed Central Google Scholar
DiRocco RJ, Hall WG (1981) Metabolic neural mapping in neonatal rats. J Neurosci Res 6:13–19. https://doi.org/10.1002/JNR.490060103
Article CAS PubMed Google Scholar
Camandola S, Mattson MP (2017) Brain metabolism in health, aging, and neurodegeneration. EMBO J 36:1474–1492. https://doi.org/10.15252/embj.201695810
Article CAS PubMed PubMed Central Google Scholar
Birdsall V, Waites CL (2019) Autophagy at the synapse. Neurosci Lett 697:24–28. https://doi.org/10.1016/J.NEULET.2018.05.033
Article CAS PubMed Google Scholar
Guedes-Dias P, Holzbaur ELF (2019) Axonal transport: driving synaptic function. Science (1979) 366:eaaw9997. https://doi.org/10.1126/science.aaw9997
Sun C, Nold A, Fusco CM et al (2021) The prevalence and specificity of local protein synthesis during neuronal synaptic plasticity. Sci Adv 7:eabj0790. https://doi.org/10.1126/SCIADV.ABJ0790/SUPPL_FILE/SCIADV.ABJ0790_SM.PDF
Article CAS PubMed PubMed Central Google Scholar
Burke WJ, Chung HD, Huang JS et al (1988) Evidence for retrograde degeneration of epinephrine neurons in Alzheimer’s disease. Ann Neurol 24:532–536. https://doi.org/10.1002/ANA.410240409
Article CAS PubMed Google Scholar
Burke RE, O’Malley K (2013) Axon degeneration in Parkinson’s disease. Exp Neurol 246:72–83
Article CAS PubMed Google Scholar
Li H, Li SH, Yu ZX et al (2001) Huntingtin aggregate-associated axonal degeneration is an early pathological event in Huntington’s disease mice. J Neurosci 21:8473–8481. https://doi.org/10.1523/JNEUROSCI.21-21-08473.2001
Article CAS PubMed PubMed Central Google Scholar
Mishra AK, Dixit A (2022) Dopaminergic axons: key recitalists in Parkinson’s disease. Neurochem Res 47:234–248. https://doi.org/10.1007/s11064-021-03464-1
Article CAS PubMed Google Scholar
Yang S, Park D, Manning L et al (2022) Presynaptic autophagy is coupled to the synaptic vesicle cycle via ATG-9. Neuron 110:824-840.e10. https://doi.org/10.1016/j.neuron.2021.12.031
Article CAS PubMed PubMed Central Google Scholar
Lüningschrör P, Sendtner M (2018) Autophagy in the presynaptic compartment. Curr Opin Neurobiol 51:80–85. https://doi.org/10.1016/J.CONB.2018.02.023
Shen W, Ganetzky B (2009) Autophagy promotes synapse development in Drosophila. J Cell Biol 187:71–79. https://doi.org/10.1083/jcb.200907109
Article CAS PubMed PubMed Central Google Scholar
Bowling H, Klann E (2014) Shaping dendritic spines in autism spectrum disorder: mTORC1-dependent macroautophagy. Neuron 83:994–996. https://doi.org/10.1016/j.neuron.2014.08.021
Article CAS PubMed Google Scholar
Tang G, Gudsnuk K, Kuo SH et al (2014) Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron 83:1131–1143. https://doi.org/10.1016/J.NEURON.2014.07.040
Article CAS PubMed PubMed Central Google Scholar
Hernandez-Diaz S, Ghimire S, Sanchez-Mirasierra I et al (2022) Endophilin-B regulates autophagy during synapse development and neurodegeneration. Neurobiol Dis 163:105595. https://doi.org/10.1016/J.NBD.2021.105595
Article CAS PubMed Google Scholar
Negrete-Hurtado A, Overhoff M, Bera S et al (2020) Autophagy lipidation machinery regulates axonal microtubule dynamics but is dispensable for survival of mammalian neurons. Nat Commun 11:1535. https://doi.org/10.1038/S41467-020-15287-9
Article CAS PubMed PubMed Central Google Scholar
Mishra AK, Mishra S, Rajput C et al (2018) Cypermethrin activates autophagosome formation albeit inhibits autophagy owing to poor lysosome quality: relevance to Parkinson’s disease. Neurotox Res 33:377–387. https://doi.org/10.1007/S12640-017-9800-3
Article CAS PubMed Google Scholar
Maday S (2016) Mechanisms of neuronal homeostasis: autophagy in the axon. Brain Res 1649:143–150. https://doi.org/10.1016/J.BRAINRES.2016.03.047
Article CAS PubMed PubMed Central Google Scholar
Stavoe AKH, Holzbaur ELF (2019) Autophagy in neurons. Annu Rev Cell Dev Biol 35:477–500. https://doi.org/10.1146/ANNUREV-CELLBIO-100818-125242
Article CAS PubMed PubMed Central Google Scholar
Xie W, Wan OW, Chung KKK (2010) New insights into the role of mitochondrial dysfunction and protein aggregation in Parkinson’s disease. Biochim Biophys Acta (BBA) - Mol Basis Dis 1802:935–941. https://doi.org/10.1016/j.bbadis.2010.07.014
Wang X, Wang W, Li L et al (2014) Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim Biophys Acta (BBA) - Mol Basis Dis 1842:1240–1247. https://doi.org/10.1016/j.bbadis.2013.10.015
Hollis F, Kanellopoulos AK, Bagni C (2017) Mitochondrial dysfunction in autism spectrum disorder: clinical features and perspectives. Curr Opin Neurobiol 45:178–187. https://doi.org/10.1016/j.conb.2017.05.018
Article CAS PubMed Google Scholar
Shacham T, Sharma N, Lederkremer GZ (2019) Protein misfolding and ER stress in Huntington’s disease. Front Mol Biosci 6:20. https://doi.org/10.3389/fmolb.2019.00020
Article CAS PubMed PubMed Central Google Scholar
Nakamura T, Lipton SA (2010) Redox regulation of mitochondrial fission, protein misfolding, synaptic damage, and neuronal cell death: potential implications for Alzheimer’s and Parkinson’s diseases. Apoptosis 15:1354–1363. https://doi.org/10.1007/s10495-010-0476-x
Article CAS PubMed PubMed Central Google Scholar
Pérez-Torres EJ, Utkina-Sosunova I, Mishra V et al (2022) Retromer dysfunction in amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 119:e2118755119. https://doi.org/10.1073/pnas.2118755119
Article CAS PubMed PubMed Central Google Scholar
Wong YC, Holzbaur ELF (2014) The regulation of autophagosome dynamics by huntingtin and HAP1 is disrupted by expression of mutant huntingtin, leading to defective cargo degradation. J Neurosci 34:1293–1305. https://doi.org/10.1523/JNEUROSCI.1870-13.2014
留言 (0)