The effect of rs2910686 on ERAP2 expression in IBD and epithelial inflammatory response

Noble AJ, Nowak JK, Adams AT, Uhlig HH, Satsangi J. Defining interactions between the genome, Epigenome, and the Environment in Inflammatory Bowel Disease: progress and prospects. Gastroenterology. 2023;165(1):44–.

Article  CAS  PubMed  Google Scholar 

Jans D, Cleynen I. The genetics of non-monogenic IBD. Hum Genet. 2023;142(5):669–82.

Article  PubMed  Google Scholar 

Guasp P, Lorente E, Martín-Esteban A, Barnea E, Romania P, Fruci D, et al. Redundancy and complementarity between ERAP1 and ERAP2 revealed by their effects on the Behcet’s Disease-associated HLA-B*51 Peptidome. Mol Cell Proteom. 2019;18(8):1491–510.

Article  CAS  Google Scholar 

Mpakali A, Giastas P, Mathioudakis N, Mavridis IM, Saridakis E, Stratikos E. Structural basis for Antigenic Peptide Recognition and Processing by Endoplasmic Reticulum (ER) Aminopeptidase 2. J Biol Chem. 2015;290(43):26021–32.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tanioka T, Hattori A, Masuda S, Nomura Y, Nakayama H, Mizutani S, et al. Human leukocyte-derived arginine aminopeptidase - the third member of the oxytocinase subfamily of aminopeptidases. J Biol Chem. 2003;278(34):32275–83.

Article  CAS  PubMed  Google Scholar 

Andrés AM, Dennis MY, Kretzschmar WW, Cannons JL, Lee-Lin SQ, Hurle B et al. Balancing selection maintains a form of that undergoes nonsense-mediated decay and affects Antigen Presentation. PLoS Genet. 2010;6(10).

Klunk J, Vilgalys TP, Demeure CE, Cheng XH, Shiratori M, Madej J, et al. Evolution of immune genes is associated with the black death. Nature. 2022;611(7935):312–.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hamilton F, Mentzer AJ, Parks T, Baillie JK, Smith GD, Ghazal P, et al. Variation in ERAP2 has opposing effects on severe respiratory infection and autoimmune disease. Am J Hum Genet. 2023;110(4):691–702.

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Castro JAL, Stratikos E. Intracellular antigen processing by ERAP2: molecular mechanism and roles in health and disease. Hum Immunol. 2019;80(5):310–7.

Article  PubMed  Google Scholar 

Liu JZ, van Sommeren S, Huang HL, Ng SC, Alberts R, Takahashi A, et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet. 2015;47(9):979–.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Franke A, McGovern DPB, Barrett JC, Wang K, Radford-Smith GL, Ahmad T, et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet. 2010;42(12):1118–.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saulle I, Ibba SV, Torretta E, Vittori C, Fenizia C, Piancone F et al. vol 10, 1648,. Endoplasmic Reticulum Associated Aminopeptidase 2 (ERAP2) Is Released in the Secretome of Activated MDMs and Reduces HIV-1 Infection (2019). Front Immunol. 2019;10.

Guan W, Nakata K, Sagara A, Iwamoto C, Endo S, Matsuda R et al. vol 22, pg 9,. ERAP2 is a novel target involved in autophagy and activation of pancreatic stellate cells via UPR signaling pathway (2022). Pancreatology. 2022;22(7):1059-.

Zhang JH, Cai H, Sun WW, Wu WJ, Nan YY, Ni YC et al. Endoplasmic reticulum aminopeptidase 2 regulates CD4 T cells pyroptosis in rheumatoid arthritis. Arthritis Res Ther. 2024;26(1).

Saulle I, Vanetti C, Goglia S, Vicentini C, Tombetti E, Garziano M et al. A New ERAP2/Iso3 isoform expression is triggered by different microbial stimuli in human cells. Could it play a role in the modulation of SARS-CoV-2 infection? Cells-Basel. 2020;9(9).

Mattorre B, Caristi S, Donato S, Volpe E, Faiella M, Paiardini A et al. A short ERAP2 that binds IRAP is expressed in Macrophages independently of Gene Variation. Int J Mol Sci. 2022;23(9).

Gadalla SE, Öjemalm K, Vasquez PL, Nilsson I, Ericsson C, Zhao J, et al. EpCAM associates with endoplasmic reticulum aminopeptidase 2 (ERAP2) in breast cancer cells. Biochem Bioph Res Co. 2013;439(2):203–8.

Article  CAS  Google Scholar 

Jairath V, Feagan BG. Global burden of inflammatory bowel disease. Lancet Gastroenterol. 2020;5(1):2–3.

Google Scholar 

Martini E, Krug SM, Siegmund B, Neurath MF, Becker C. Mend your fences: the epithelial barrier and its Relationship with Mucosal Immunity in Inflammatory Bowel Disease. Cell Mol Gastroenter. 2017;4(1):33–46.

Google Scholar 

Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, et al. Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491(7422):119–24.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Das S, Forer L, Schönherr S, Sidore C, Locke AE, Kwong A, et al. Next-generation genotype imputation service and methods. Nat Genet. 2016;48(10):1284–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mahe MM, Sundaram N, Watson CL, Shroyer NF, Helmrath MA. Establishment of human epithelial enteroids and colonoids from whole tissue and Biopsy. Jove-J Vis Exp. 2015(97).

Jung P, Sato T, Merlos-Suárez A, Barriga FM, Iglesias M, Rossell D, et al. Isolation and expansion of human colonic stem cells. Nat Med. 2011;17(10):1225–7.

Article  CAS  PubMed  Google Scholar 

Gopalakrishnan S, Bakke I, Hansen MD, Skovdahl HK, Granlund AV, Sandvik AK et al. Comprehensive protocols for culturing and molecular biological analysis of IBD patient-derived colon epithelial organoids. Front Immunol. 2023;14.

Walaas GA, Gopalakrishnan S, Bakke I, Skovdahl HK, Flatberg A, Ostvik AE et al. Physiological hypoxia improves growth and functional differentiation of human intestinal epithelial organoids. Front Immunol. 2023;14.

Tanioka T, Hattori A, Mizutani S, Tsujimoto M. Regulation of the human leukocyte-derived arginine aminopeptidase endoplasmic reticulum-aminopeptidase 2 gene by interferon-γ. Febs J. 2005;272(4):916–28.

Article  CAS  PubMed  Google Scholar 

Ciorba MA, Konnikova L, Hirota SA, Lucchetta EM, Turner JR, Slavin A, et al. Challenges in IBD Research 2024: Preclinical Human IBD mechanisms. Inflamm Bowel Dis. 2024;30:S5–18.

Article  PubMed  Google Scholar 

Kronborg L, Hansen EO, Bertelsen T, Rittig AH, Emmanuel T, Jørgensen S et al. ERAP1 and ERAP2 gene variants as potential clinical biomarkers of Anti-IL-17A response in Psoriasis Vulgaris. Clin Exp Dermatol. 2024:llae128.

Taman H, Fenton CG, Hensel IV, Anderssen E, Florholmen J, Paulssen RH. Transcriptomic Landscape of Treatment-Naive Ulcerative Colitis. J Crohns Colitis. 2018;12(3):327–36.

Article  PubMed  Google Scholar 

Quraishi MN, Acharjee A, Beggs AD, Horniblow R, Tselepis C, Gkoutos G, et al. A pilot integrative analysis of colonic gene expression, gut microbiota, and immune infiltration in primary sclerosing cholangitis-inflammatory bowel disease: association of disease with bile acid pathways. J Crohn’s Colitis. 2020;14(7):935–47.

Article  Google Scholar 

Machiela MJ, Chanock SJ. LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics. 2015;31(21):3555–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ellinghaus D, Jostins L, Spain SL, Cortes A, Bethune J, Han B, et al. Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci. Nat Genet. 2016;48(5):510–.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Venema WJ, Hiddingh S, van Loosdregt J, Bowes J, Balliu B, de Boer JH et al. A cis-regulatory element regulates ERAP2 expression through autoimmune disease risk SNPs. Cell Genomics. 2023.

Lu CY, Amin MA, Fox DA. CD13/Aminopeptidase N is a potential therapeutic target for Inflammatory disorders. J Immunol. 2020;204(1):3–11.

Article  CAS  PubMed  Google Scholar 

Ji L, Wu HT, Qin XY, Lan RF. Dissecting carboxypeptidase E: properties, functions and pathophysiological roles in disease. Endocr Connect. 2017;6(4):R18–38.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu YB, Yang WJ, Li YQ, Cong YZ. Enteroendocrine cells: sensing gut microbiota and regulating inflammatory Bowel diseases. Inflamm Bowel Dis. 2020;26(1):11–20.

Article  PubMed  Google Scholar 

Bär F, Föh B, Pagel R, Schröder T, Schlichting H, Hirose M et al. Carboxypeptidase E modulates intestinal Immune Homeostasis and protects against experimental colitis in mice. PLoS ONE. 2014;9(7).

Yeager CL, Ashmun RA, Williams RK, Cardellichio CB, Shapiro LH, Look AT, et al. Human Aminopeptidase-N is a receptor for human Coronavirus-229e. Nature. 1992;357(6377):420–2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saeterstad S, Ostvik AE, Royset ES, Bakke I, Sandvik AK, Granlund AV. Profound gene expression changes in the epithelial monolayer of active ulcerative colitis and Crohn’s disease. PLoS ONE. 2022;17(3).

Herzog C, Haun RS, Kaushal GP. Role of meprin metalloproteinases in cytokine processing and inflammation. Cytokine. 2019;114:18–25.

Article  CAS  PubMed  Google Scholar 

Werny L, Colmorgen C, Becker-Pauly C. Regulation of meprin metalloproteases in mucosal homeostasis. Bba-Mol Cell Res. 2022;1869(1).

Banerjee S, Oneda B, Yap LM, Jewell DP, Matters GL, Fitzpatrick LR, et al. MEP1A allele for meprin A metalloprotease is a susceptibility gene for inflammatory bowel disease. Mucosal Immunol. 2009;2(3):220–31.

Honzawa Y, Nakase H, Matsuura M, Chiba T. Clinical significance of serum diamine oxidase activity in inflammatory bowel disease: importance of evaluation of small intestinal permeability. Inflamm Bowel Dis. 2011;17(2):E23–5.

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif