PvMYB60 gene, a candidate for drought tolerance improvement in common bean in a climate change context

Gepts P. Phaseolus vulgaris (beans). In: Brenner S, Miller JH, editors. Encycl genet. London: Academic Press; 2001. p. 1444–5.

Chapter  Google Scholar 

De Ron AM, Papa R, Bitocchi E, González AM, Debouck DG, Brick MA, et al. Common bean. In: de Ron AM, editor., et al., Grain legum. New York: Springer; 2015. p. 1–36.

Chapter  Google Scholar 

Myers JR, Kmiecik K. Common bean: economic importance and relevance to biological science research. In: Pérez de la Vega M, Santalla M, Marsolais F, editors. Common bean genome. Cham: Springer; 2017. p. 1–20.

Google Scholar 

Oliveira B, de Moura AP, Cunha LM. Increasing pulse consumption to improve human health and food security and to mitigate climate change. In: Castro P, Azul A, Leal Filho W, Azeiteiro U, editors. Clim chang agric agroforestry clim chang manag. Cham: Springer; 2019. p. 21–35.

Google Scholar 

Thavarajah D, McSwain M, Johnson CR, Kumar S, Thavarajah P. Pulses, global health, and sustainability: future trends. In: Dahl W, editor. Heal benefits pulses. Cham: Springer; 2019. p. 1–17.

Google Scholar 

Calles T, Del Castello R, Baratelli M, Xipsiti M, Navarro Kalamvrezos D. The international year of pulses final report [internet]. Rome; 2019. Available from: https://www.fao.org/3/CA2853EN/ca2853en.pdf.

Uebersax MA, Cichy KA, Gomez FE, Porch TG, Heitholt J, Osorno JM, et al. Dry beans (Phaseolus vulgaris L.) as a vital component of sustainable agriculture and food security—a review. Legum Sci. 2023;5:1–13.

Google Scholar 

Konapala G, Mishra AK, Wada Y, Mann ME. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nat Commun. 2020;11:1–10.

Article  Google Scholar 

Kuzma Samantha, Saccoccia Liz, Chertock Merlena. 25 Countries Face Extremely High Water Stress | World Resources Institute [Internet]. World Resour. Inst. 2023 [cited 2023 Oct 4]. Available from: https://www.wri.org/insights/highest-water-stressed-countries.

Polania J, Cajiao C, Rao IM, Beebe S, Rivera M, Raatz B. Physiological traits associated with drought resistance in Andean and Mesoamerican genotypes of common bean (Phaseolus vulgaris L.). Euphytica. 2016;210:17–29.

Article  Google Scholar 

Beebe SE, Rao IM, Blair MW, Acosta-Gallegos JA. Phenotyping common beans for adaptation to drought. Front Physiol. 2013;4:35.

Article  PubMed  PubMed Central  Google Scholar 

Farooq M, Hussain M, Wahid A, Siddique KHM. Drought stress in plants: an overview. In: Aroca R, editor. Plant responses to drought stress from morphol to mol featur. London: Springer; 2012. p. 1–33. https://doi.org/10.1007/978-3-642-32653-0_1.

Chapter  Google Scholar 

Bertolino LT, Caine RS, Gray JE. Impact of stomatal density and morphology on water-use efficiency in a changing world. Front Plant Sci. 2019;10:225.

Article  PubMed  PubMed Central  Google Scholar 

Nguyen TBA, Lefoulon C, Nguyen TH, Blatt MR, Carroll W. Engineering stomata for enhanced carbon capture and water-use efficiency. Trends Plant Sci. 2023;28:1290–309.

Article  PubMed  Google Scholar 

Lawson T, Matthews J. Guard cell metabolism and stomatal function. Annu Rev Plant Biol. 2020;71:273–302.

Article  PubMed  Google Scholar 

Cominelli E, Galbiati M, Tonelli C. Transcription factors controlling stomatal movements and drought tolerance. Transcription. 2010;1:41–5.

Article  PubMed  PubMed Central  Google Scholar 

Riechmann JL, Heard J, Martin G, Reuber L, Jiang C-Z, Keddie J, et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science. 2000;290:2105–10.

Article  PubMed  Google Scholar 

Stracke R, Werber M, Weisshaar B. The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol. 2001;4:447–56.

Article  PubMed  Google Scholar 

Simeoni F, Simoni L, Zottini M, Conti L, Tonelli C, Castorina G, et al. Expression of the VvMYB60 transcription factor is restricted to guard cells and correlates with the stomatal conductance of the grape leaf. Agron. 2022;12:694.

Article  Google Scholar 

Cominelli E, Galbiati M, Vavasseur A, Conti L, Sala T, Vuylsteke M, et al. A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Curr Biol. 2005;15:1196–200.

Article  PubMed  Google Scholar 

Galbiati M, Matus JT, Francia P, Rusconi F, Cañón P, Medina C, et al. The grapevine guard cell-related VvMYB60 transcription factor is involved in the regulation of stomatal activity and is differentially expressed in response to ABA and osmotic stress. BMC Plant Biol. 2011;11:1–15.

Article  Google Scholar 

Simeoni F, Skirycz A, Simoni L, Castorina G, de Souza LP, Fernie AR, et al. The AtMYB60 transcription factor regulates stomatal opening by modulating oxylipin synthesis in guard cells. Sci Rep. 2022;121(12):1–12.

Google Scholar 

Rodríguez-Hoces De La Guardia A, Ugalde MB, Lobos-Diaz V, Romero-Romero JL, Meyer-Regueiro C, Inostroza-Blancheteau C, Arce-Johnson P, et al. Isolation and molecular characterization of MYB60 in solanum lycopersicum. Mol Biol Rep. 2021. https://doi.org/10.1007/s11033-021-06168-5.

Article  PubMed  Google Scholar 

Cominelli E, Confalonieri M, Carlessi M, Cortinovis G, Daminati MG, Porch TG, et al. Phytic acid transport in Phaseolus vulgaris: a new low phytic acid mutant in the PvMRP1 gene and study of the PvMRPs promoters in two different plant systems. Plant Sci. 2018;270:1–12.

Article  PubMed  Google Scholar 

Harrison SJ, Mott EK, Parsley K, Aspinall S, Gray JC, Cottage A. A rapid and robust method of identifying transformed Arabidopsis thaliana seedlings following floral dip transformation. Plant Methods. 2006;2:1–7.

Article  Google Scholar 

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–9. https://doi.org/10.1093/molbev/msy096.

Article  PubMed  PubMed Central  Google Scholar 

Cominelli E, Galbiati M, Albertini A, Fornara F, Conti L, Coupland G, et al. DOF-binding sites additively contribute to guard cell-specificity of AtMYB60 promoter. BMC Plant Biol. 2011;11:1–13.

Article  Google Scholar 

Wang RS, Pandey S, Li S, Gookin TE, Zhao Z, Albert R, et al. Common and unique elements of the ABA-regulated transcriptome of Arabidopsis guard cells. BMC Genomics. 2011;121(12):1–24.

Google Scholar 

Borges A, Tsai SM, Caldas DGG. Validation of reference genes for RT-qPCR normalization in common bean during biotic and abiotic stresses. Plant Cell Rep. 2012;31:827–38.

Article  PubMed  Google Scholar 

Curtis MD, Grossniklaus U. A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol. 2003;133:462–9. https://doi.org/10.1104/pp.103.027979.

Article  PubMed  PubMed Central  Google Scholar 

Davis AM, Hall A, Millar AJ, Darrah C, Davis SJ. Protocol: streamlined sub-protocols for floral-dip transformation and selection of transformants in arabidopsis thaliana. Plant Methods. 2009;5:1–7.

Article  Google Scholar 

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;97(9):676–82.

Article  Google Scholar 

Stracke R, Werber M, Weisshaar B. The R2R3-MYB gene family in Arabidopsis thaliana. Curr. Opin. Plant Biol. Elsevier, London; 2001. p. 447–56.

Galbiati M, Simoni L, Pavesi G, Cominelli E, Francia P, Vavasseur A, et al. Gene trap lines identify Arabidopsis genes expressed in stomatal guard cells. Plant J. 2008;53:750–62. https://doi.org/10.1111/j.1365-313X.2007.03371.x.

Article  PubMed  Google Scholar 

Schachtman DP, Schroeder JI, Lucas WJ, Anderson JA, Gaber RF. Expression of an inward-rectifying potassium channel by the Arabidopsis KAT1 cDNA. Science. 1992;258:1654–8.

Article  PubMed  Google Scholar 

Gupta A, Rico-Medina A, Caño-Delgado AI. The physiology of plant responses to drought. Science. 2020;368:266–9.

Article  PubMed  Google Scholar 

Assefa T, Assibi Mahama A, Brown AV, Cannon EKS, Rubyogo JC, Rao IM, et al. A review of breeding objectives, genomic resources, and marker-assisted methods in common bean (Phaseolus vulgaris L.). Mol Breed. 2019;39:1.

Article  Google Scholar 

Sofi PA, Rehman K, Gull M, Kumari J, Djanaguiraman M, Prasad PVV. Integrating root architecture and physiological approaches for improving drought tolerance in common bean (Phaseolus vulgaris L.). Plant Physiol Rep. 2021. https://doi.org/10.1007/s40502-021-00570-8.

Article  Google Scholar 

Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec LL. MYB transcription factors in Arabidopsis. Trends Plant Sci (Internet). 2010;15:1.

Google Scholar 

Zou X, Sun H. DOF transcription factors: specific regulators of plant biological processes. Front Plant Sci. 2023;14:1044918.

Article  PubMed  PubMed Central  Google Scholar 

Sylvester AW, Smith L, Freeling M. Acquisition of identity in the developing leaf. Annu Rev Cell Dev Biol. 1996;12:257–304.

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif