Influence of the heat treatment on structural and functional characteristics of the PtCu/C electrocatalysts on various carbon supports

Wang H, Wang R, Sui S et al (2021) Cathode design for proton exchange membrane fuel cells in automotive applications. Automotive Innovation 4:144–164. https://doi.org/10.1007/s42154-021-00148-y

Article  Google Scholar 

Jiao K, Xuan J, Du Q et al (2021) Designing the next generation of proton-exchange membrane fuel cells. Nature 595:361–369. https://doi.org/10.1038/s41586-021-03482-7

Article  CAS  PubMed  Google Scholar 

Tellez-Cruz MM, Escorihuela J, Solorza-Feria O, Compañ V (2021) Proton exchange membrane fuel cells (PEMFCs): advances and challenges. Polymers (Basel) 13:3064. https://doi.org/10.3390/polym13183064

Article  CAS  PubMed  Google Scholar 

Wang XX, Sokolowski J, Liu H, Wu G (2020) Pt alloy oxygen-reduction electrocatalysts: synthesis, structure, and property. Chin J Catal 41:739–755. https://doi.org/10.1016/S1872-2067(19)63407-8

Article  CAS  Google Scholar 

Wang Y-J, Long W, Wang L et al (2018) Unlocking the door to highly active ORR catalysts for PEMFC applications: polyhedron-engineered Pt-based nanocrystals. Energy Environ Sci 11:258–275. https://doi.org/10.1039/C7EE02444D

Article  CAS  Google Scholar 

Sui S, Wang X, Zhou X et al (2017) A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: nanostructure, activity, mechanism and carbon support in PEM fuel cells. J Mater Chem A Mater 5:1808–1825. https://doi.org/10.1039/C6TA08580F

Article  CAS  Google Scholar 

Borup RL, Kusoglu A, Neyerlin KC et al (2020) Recent developments in catalyst-related PEM fuel cell durability. Curr Opin Electrochem 21:192–200. https://doi.org/10.1016/j.coelec.2020.02.007

Article  CAS  Google Scholar 

Singh RK, Rahul R, Neergat M (2013) Stability issues in Pd-based catalysts: the role of surface Pt in improving the stability and oxygen reduction reaction (ORR) activity. Phys Chem Chem Phys 15:13044. https://doi.org/10.1039/c3cp50697e

Article  CAS  PubMed  Google Scholar 

Devivaraprasad R, Ramesh R, Naresh N et al (2014) Oxygen reduction reaction and peroxide generation on shape-controlled and polycrystalline platinum nanoparticles in acidic and alkaline electrolytes. Langmuir 30:8995–9006. https://doi.org/10.1021/la501109g

Article  CAS  PubMed  Google Scholar 

Wang R, Wang H, Luo F, Liao S (2018) Core–shell-structured low-platinum electrocatalysts for fuel cell applications. Electrochem Energy Rev 1:324–387. https://doi.org/10.1007/s41918-018-0013-0

Article  CAS  Google Scholar 

Nørskov JK, Rossmeisl J, Logadottir A et al (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108:17886–17892. https://doi.org/10.1021/jp047349j

Article  CAS  Google Scholar 

Li H, Zhao H, Tao B et al (2022) Pt-based oxygen reduction reaction catalysts in proton exchange membrane fuel cells: controllable preparation and structural design of catalytic layer. Nanomaterials 12:4173. https://doi.org/10.3390/nano12234173

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lyu X, Jia Y, Mao X et al (2020) Gradient-concentration design of stable core–shell nanostructure for acidic oxygen reduction electrocatalysis. Adv Mater 32:2003493. https://doi.org/10.1002/adma.202003493

Article  CAS  Google Scholar 

Alekseenko AA, Guterman VE, Belenov SV et al (2018) Pt/C electrocatalysts based on the nanoparticles with the gradient structure. Int J Hydrogen Energy 43:3676–3687. https://doi.org/10.1016/j.ijhydene.2017.12.143

Article  CAS  Google Scholar 

Zhang X, Li H, Yang J et al (2021) Recent advances in Pt-based electrocatalysts for PEMFCs. RSC Adv 11:13316–13328. https://doi.org/10.1039/D0RA05468B

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang X, Li Z, Qu Y et al (2019) Review of metal catalysts for oxygen reduction reaction: from nanoscale engineering to atomic design. Chem 5:1486–1511. https://doi.org/10.1016/j.chempr.2019.03.002

Article  CAS  Google Scholar 

Wang Y, Kang, et al (2019) Rational development of structurally ordered platinum ternary intermetallic electrocatalysts for oxygen reduction reaction. Catalysts 9:569. https://doi.org/10.3390/catal9070569

Article  CAS  Google Scholar 

Neergat M, Rahul R (2012) Unsupported Cu-Pt core-shell nanoparticles: oxygen reduction reaction (ORR) catalyst with better activity and reduced precious metal content. J Electrochem Soc 159:F234–F241. https://doi.org/10.1149/2.039207jes

Article  CAS  Google Scholar 

Belenov S, Alekseenko A, Pavlets A et al (2022) Architecture evolution of different nanoparticles types: relationship between the structure and functional properties of catalysts for PEMFC. Catalysts 12:638. https://doi.org/10.3390/catal12060638

Article  CAS  Google Scholar 

Bezerra CWB, Zhang L, Liu H et al (2007) A review of heat-treatment effects on activity and stability of PEM fuel cell catalysts for oxygen reduction reaction. J Power Sources 173:891–908. https://doi.org/10.1016/j.jpowsour.2007.08.028

Article  CAS  Google Scholar 

Pavlets AS, Alekseenko AA, Nikolskiy AV et al (2022) Effect of the PtCu/C electrocatalysts initial composition on their activity in the de-alloyed state in the oxygen reduction reaction. Int J Hydrogen Energy 47:30460–30471. https://doi.org/10.1016/j.ijhydene.2022.07.014

Article  CAS  Google Scholar 

Đukić T, Pavko L, Jovanovič P et al (2022) Stability challenges of carbon-supported Pt-nanoalloys as fuel cell oxygen reduction reaction electrocatalysts. Chem Commun 58:13832–13854. https://doi.org/10.1039/D2CC05377B

Article  Google Scholar 

Gatalo M, Ruiz-Zepeda F, Hodnik N et al (2019) Insights into thermal annealing of highly-active PtCu3/C oxygen reduction reaction electrocatalyst: an in-situ heating transmission Electron microscopy study. Nano Energy 63. https://doi.org/10.1016/j.nanoen.2019.103892

Article  CAS  Google Scholar 

Gatalo M, Jovanovič P, Petek U et al (2019) Comparison of Pt–Cu/C with benchmark Pt–Co/C: metal dissolution and their surface interactions. ACS Appl Energy Mater 2:3131–3141. https://doi.org/10.1021/acsaem.8b02142

Article  CAS  Google Scholar 

Hodnik N, Jeyabharathi C, Meier JC et al (2014) Effect of ordering of PtCu 3 nanoparticle structure on the activity and stability for the oxygen reduction reaction. Phys Chem Chem Phys 16:13610–13615. https://doi.org/10.1039/C4CP00585F

Article  CAS  PubMed  Google Scholar 

Yan W, Zhang D, Zhang Q et al (2022) Synthesis of PtCu–based nanocatalysts: fundamentals and emerging challenges in energy conversion. J Energy Chem 64:583–606. https://doi.org/10.1016/j.jechem.2021.05.003

Article  CAS  Google Scholar 

Pryadchenko VV, Belenov SV, Shemet DB et al (2018) Effect of thermal treatment on the atomic structure and electrochemical characteristics of bimetallic PtCu core–shell nanoparticles in PtCu/C electrocatalysts. J Phys Chem C 122:17199–17210. https://doi.org/10.1021/acs.jpcc.8b03696

Article  CAS  Google Scholar 

Wu B, Du F, Wang H et al (2022) Effects of annealing temperature of PtCu/MWCNT catalysts on their electrocatalytic performance of electrooxidation of methanol. Ionics (Kiel) 28:369–382. https://doi.org/10.1007/s11581-021-04311-7

Article  CAS  Google Scholar 

Belenov S, Nevelskaya A, Nikulin A, Tolstunov M (2023) The effect of pretreatment on a PtCu/C catalyst’s structure and functional characteristics. Int J Mol Sci 24:2177. https://doi.org/10.3390/ijms24032177

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alekseenko A, Pavlets A, Moguchikh E et al (2022) Platinum-containing nanoparticles on N-doped carbon supports as an advanced electrocatalyst for the oxygen reduction reaction. Catalysts 12:414. https://doi.org/10.3390/catal12040414

Article  CAS  Google Scholar 

Kaewsai D, Yeamdee S, Supajaroon S, Hunsom M (2018) ORR activity and stability of PtCr/C catalysts in a low temperature/pressure PEM fuel cell: effect of heat treatment temperature. Int J Hydrogen Energy 43:5133–5144. https://doi.org/10.1016/j.ijhydene.2018.01.101

Article 

留言 (0)

沒有登入
gif