Effects of Lithium Ion Irradiation on Yttria-Stabilized Zirconia Thin Films: Structural and Optical Investigations

N. Claussen, M. Ruhle, and A.H. Heuer, Science and Technology of Zirconia II (New York: American Ceramic Society Inc, 1983).

Google Scholar 

R. Stevens, Zirconia and Zirconia Ceramics, 2nd ed., (Twickenham: Magnesium Elektron, 1986).

Google Scholar 

K.E. Sickafus, H.J. Matzke, T.H. Hartmann, K. Yasuda, J.A. Valdez, P. Chodak III., M. Nastasi, and R.A. Verrall, Radiation damage effects in zirconia. J. Nucl. Mater. 274, 66 (1999).

CAS  Google Scholar 

R.H. French, S.J. Glass, F.S. Ohuchi, Y.N. Xu, and W.Y. Ching, Experimental and theoretical determination of the electronic structure and optical properties of three phases of ZrO2. Phys. Rev. B 49, 5133 (1994).

CAS  Google Scholar 

S. Nath, S. Bajaj, and B. Basu, Microwave-sintered MgO-doped zirconia with improved mechanical and tribological properties. Int. J. Appl. Ceram. Technol. 5, 49 (2008).

CAS  Google Scholar 

N.S. Jacobson, Z. Liu, L. Kaufman, and F. Zhang, Thermodynamic modeling of the YO1.5–ZrO2 system. J. Am. Ceram. Soc. 87, 1559 (2004).

CAS  Google Scholar 

L. Combemale, G. Caboche, D. Stuerga, and D. Chaumont, Microwave synthesis of yttria stabilized zirconia (YSZ). Mater. Res. Bull. 40, 529 (2005).

CAS  Google Scholar 

C.W. Kuo, Y.H. Lee, I.M. Hung, M.C. Wang, S.B. Wen, K.Z. Fung, and C.J. Shih, Crystallization kinetics and growth mechanism of 8 mol.% yttria-stabilized zirconia (8YSZ) nano-powders prepared by a sol-gel process. J. Alloys Compd. 453, 470 (2008).

CAS  Google Scholar 

J. Molina Reyes, H. Tiznado, G. Soto, M. Vargas-Bautista, D. Dominguez, E. Bracamontes, D. Sweeney, and J. Read, Physical and electrical characterization of yttrium-stabilized zirconia (YSZ) thin films deposited by sputtering and atomic-layer deposition. J. Mater. Sci. Mater. Electron. 29, 15349 (2018).

CAS  Google Scholar 

J.C. Ray, R.K. Pati, and P. Pramanik, Chemical synthesis and structural characterization of nanocrystalline powders of pure zirconia and yttria stabilized zirconia (YSZ). J. Eur. Ceram. Soc. 20, 1289 (2000).

CAS  Google Scholar 

S. Tailor, M. Singh, and A. Doub, Synthesis and characterization of yttria-stabilized zirconia (YSZ) nano-clusters for thermal barrier coatings (TBCs) applications. J. Clust. Sci. 27, 1097 (2016).

CAS  Google Scholar 

L. Chen, Y. Chang, Q. Guo, J. Zhang, F. Wan, and Y. Long, Phase stability, grain growth and photoluminescence property of nanocrystalline yttria-stabilized zirconia film under 500 keV Xe6+ ion irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B 328, 84 (2014).

CAS  Google Scholar 

S. Akasaka, Y. Amamoto, H. Yuji, and I. Kanno, Limiting current type yttria-stabilized zirconia thin-film oxygen sensor with spiral Ta2O5 gas diffusion layer. Sens. Actuat. B Chem. 327, 128932 (2021).

CAS  Google Scholar 

M. Raza, D. Cornil, J. Cornil, S. Lucas, R. Snyders, and S. Konstantinidis, Oxygen vacancy stabilized zirconia (OVSZ); a joint experimental and theoretical study. Scripta Mater. 124, 26 (2016).

CAS  Google Scholar 

Y.H. Lee, C.W. Kuo, I.M. Hung, K.Z. Fung, and M.C. Wang, The thermal behavior of 8 mol.% yttria-stabilized zirconia nanocrystallites prepared by a sol-gel process. J. Non-Cryst. Solids 351, 3709 (2005).

CAS  Google Scholar 

A.M. Adamska, R. Springell, A.D. Warren, L. Picco, O. Payton, and T.B. Scott, Growth and characterization of uranium-zirconium alloy thin films for nuclear industry applications. J. Phys. D Appl. Phys. 47, 10 (2014).

Google Scholar 

S. de Souza, S.J. Visco, and L.C. De Jonghe, Thin-film solid oxide fuel cell with high performance at low-temperature. Solid State Ion. 98, 57 (1997).

Google Scholar 

R. Frison, S. Heiroth, J.L.M. Rupp, K. Conder, E.J. Barthazy, E. Müller, M. Horisberger, M. Döbeli, and L.J. Gauckler, Crystallization of 8 mol.% yttria-stabilized zirconia thin-films deposited by RF-sputtering. Solid State Ion. 232, 29 (2013).

CAS  Google Scholar 

Y.W. Lee, C.Y. Joung, S.H. Kim, and S.C. Lee, Inert matrix fuel—a new challenge for material technology in the nuclear fuel cycle. Met. Mater. Int. 7, 159 (2001).

CAS  Google Scholar 

G. Ackland, Controlling radiation damage. Science 327, 1587 (2010).

CAS  PubMed  Google Scholar 

I.J. Beyerlein, A. Caro, M.J. Demkowicz, N.A. Mara, A. Misra, and B.P. Uberuaga, Radiation damage tolerant nanomaterials. Mater. Today 16, 443 (2013).

CAS  Google Scholar 

J. Adam and B. Cox, The irradiation-induced phase transformation in zirconia solid solutions. J. Nucl. Energy Part A React Sci. 11, 31 (1959).

CAS  Google Scholar 

M. Nastasi and J.W. Mayer, Ion Implantation and Synthesis of Materials (Berlin: Springer, 2006).

Google Scholar 

S.J. Zinkle and V.A. Skuratov, Track formation and dislocation loop interaction in spinel irradiated with swift heavy ions. Nucl. Instrum. Methods Phys. Res. Sect. B 141, 737 (1998).

CAS  Google Scholar 

N. Itoh, D.M. Duffy, S. Khakshouri, and A.M. Stoneham, Making tracks: electronic excitation roles in forming swift heavy ion tracks. J. Phys. Condens. Matter 21, 474205 (2009).

CAS  PubMed  Google Scholar 

J.-M. Costantini, C. Trautmann, L. Thomé, J. Jagielski, and F. Beuneu, Swift heavy ion-induced swelling and damage in yttria-stabilized zirconia. J. Appl. Phys. 101, 073501 (2007).

Google Scholar 

R. Parveen, P. Kalita, R. Shukla, V. Grover, R. Pandey, G. Sattonnay, and D.K. Avasthi, Investigation of radiation tolerance of yttria stabilized zirconia in the ballistic collision regime: effect of grain size and environmental temperature. Nucl. Instrum. Methods Phys. Res. Sect. B 551, 165344 (2024).

CAS  Google Scholar 

S. Dey, J.W. Drazin, Y. Wang, J.A. Valdez, T.G. Holesinger, B.P. Uberuaga, and R.H.R. Castro, Radiation tolerance of nanocrystalline ceramics: insights from yttria stabilized zirconia. Sci. Rep. 5, 7746 (2015).

CAS  PubMed  PubMed Central  Google Scholar 

P. Kalita, S. Ghosh, G. Sattonnay, U.B. Singh, I. Monnet, and D.K. Avasthi, Radiation response of nano-crystalline cubic zirconia: comparison between nuclear energy loss and electronic energy loss regimes. Nucl. Instrum. Methods Phys. Res. Sect. B 435, 19 (2018).

CAS  Google Scholar 

R.C. Ramola, M. Rawat, K. Joshi, A. Das, S.K. Gautam, and F. Singh, Study of phase transformation induced by electronic excitation in pure and yttrium doped ZrO2 thin films. Mater. Res. Express 4, 096401 (2017).

Google Scholar 

T. Hojo, J. Aihara, K. Hojou, S. Furuno, H. Yamamoto, N. Nitani, T. Yamashita, K. Minato, and T. Sakuma, Irradiation effects on yttria-stabilized zirconia irradiated with neon ions. J. Nucl. Mater. 319, 81 (2003).

CAS  Google Scholar 

T. Hojo, H. Yamamoto, J. Aihara, S. Furuno, K. Sawa, T. Sakuma, and K. Hojou, Radiation effects on yttria-stabilized zirconia irradiated with He or Xe ions at high temperature. Nucl. Instrum. Methods Phys. Res. Sect. B 241, 536 (2005).

CAS  Google Scholar 

N. Sasajima, T. Matsui, K. Hojou, S. Furuno, H. Otsu, K. Izui, and T. Muromura, Radiation damage in yttria-stabilized zirconia under Xe ion irradiation. Nucl. Inst. Methods Phys. Res. B 141, 487 (1998).

CAS  Google Scholar 

X. Zhang, C. Sun, H. Ji, M. Yang, H. Zhang, W. Tian, Y. Wu, O.V. Tolochko, and Y. Wang, A review of CNTs and graphene reinforced YSZ nanocomposites: preparation, mechanical and anti-irradiation properties. J. Mater. Sci. Technol. 167, 27 (2023).

CAS  Google Scholar 

J.-M. Costantini, O. Cavani, and B. Boizot, On-line optical absorption of electron-irradiated yttria-stabilized zirconia. J. Phys. Chem. Solids 169, 110853 (2022).

CAS  Google Scholar 

X.-M. Bai, A.F. Voter, R.G. Hoagland, M. Nastasi, and B.P. Uberuaga, Efficient annealing of radiation damage near grain boundaries via interstitial emission. Science 327, 1631 (2010).

CAS  PubMed  Google Scholar 

K.E. Sickafus, L. Minervini, R.W. Grimes, J.A. Valdez, M. Ishimaru, F. Li, K.J. McClellan, and T. Yamashita, Radiation tolerance of complex oxides. Science 289, 748 (2000).

CAS  PubMed  Google Scholar 

A. Debelle, J.-P. Crocombette, A. Boulle, E. Martinez, B.P. Uberuaga, D. Bachiller-Perea, Y. Haddad, F. Garrido, L. Thomé, and M. Béhar, How relative defect migration energies drive contrasting temperature-dependent microstructural evolution in irradiated ceramics. Phys. Rev. Mater. 2, 083605 (2018).

CAS  Google Scholar 

C. Onofri, C. Sabathier, H. Palancher, G. Carlot, S. Miro, Y. Serruys, L. Desgranges, and M. Legros, Evolution of extended defects in polycrystalline UO2 under heavy ion irradiation: combined TEM, XRD and Raman study. Nucl. Instrum. Methods Phys. Res. Sect. B 374, 51 (2016).

CAS  Google Scholar 

P. Kalita, S. Ghosh, U.B. Singh, P.K. Kulriya, V. Grover, R. Shukla, A.K. Tyagi, G. Sattonnay, and D.K. Avasthi, Investigating the effect of material microstructure and irradiation temperature on the radiation tolerance of yttria stabilized zirconia against high energy heavy ions. J. Appl. Phys. 125, 115902 (2019).

Google Scholar 

V. Chauhan, D. Gupta, N. Koratkar, and R. Kumar, Phase transformation and enhanced blue photoluminescence of zirconium oxide poly-crystalline thin film induced by Ni ion beam irradiation. Sci. Rep. 11, 17672 (2021).

CAS  PubMed  PubMed Central  Google Scholar 

T. Hojo, H. Yamamoto, J. Aihara, S. Furuno, K. Sawa, T. Sakuma, and K. Hojou, Loop formation by ion irradiation in yttria stabilized zirconia. Nucl. Instrum. Methods Phys. Res. Sect. B 250, 101 (2006).

CAS  Google Scholar 

A.P. Caricato, A. Lamperti, P.M. Ossi, C. Trautmann, and L. Vanzetti, Modifications of yttria fully stabilized zirconia thin films by ion irradiation in the inelastic collision regime. J. Appl. Phys. 104, 093534 (2008).

Google Scholar 

F. Garrido, S. Moll, G. Sattonnay, L. Thomé, and L. Vincent, Radiation tolerance of fluorite-structured oxides subjected to swift heavy ion irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B 267, 1451 (2009).

CAS  Google Scholar 

V. Kulyk, Z. Duriagina, A. Kostryzhev, B. Vasyliv, V. Vavrukh, and O. Marenych, The effect of yttria content on microstructure, strength, and fracture behavior of yttria-stabilized zirconia. Materials 15, 5212 (2022).

CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif