Structural, Ferroelectric, and Ferromagnetic Properties of Yttrium-Doped Cobalt Ferrites to Produce Green Electricity by Hydroelectric Cells

P. Jain, O.P. Thakur, and S. Shankar Subramanian, Structural, dielectric and impedance phenomena in copper ferrite nano powders for hydroelectric cell application. Mater. Sci. Forum 1099, 157–162 (2023).

Article  Google Scholar 

P. Jain, S. Shankar, and O.P. Thakur, Structural, dielectric, impedance, ferroelectric studies of zinc doped bismuth ferrites for hydroelectric cell application, in International Conference on Sustainable Technologies and Advances in Automation, Aerospace and Robotics (2022), pp. 505–513.

I.H. Gul and A. Maqsood, Structural, magnetic and electrical properties of cobalt ferrites prepared by the sol–gel route. J. Alloys Compd. 465(1–2), 227–231 (2008).

Article  CAS  Google Scholar 

C. Murugesan and G.J.R.A. Chandrasekaran, Impact of Gd3+ substitution on the structural, magnetic and electrical properties of cobalt ferrite nanoparticles. RSC Adv. 5(90), 73714–73725 (2015).

Article  CAS  Google Scholar 

L. Avazpour, H. Shokrollahi, M.R. Toroghinejad, and M.A. Zandi Khajeh, Effect of rare earth substitution on magnetic and structural properties of Co1−xREx Fe2O4 (RE: Nd, Eu) nanoparticles prepared via EDTA/EG assisted sol–gel synthesis. J. Alloys Compd. 662, 441–447 (2016).

Article  CAS  Google Scholar 

S. Amiri and H. Shokrollahi, Magnetic and structural properties of RE doped Co-ferrite (REåNd, Eu, and Gd) nano-particles synthesized by co-precipitation. J. Magn. Magn. Mater. 345, 18–23 (2013).

Article  CAS  Google Scholar 

F. Cheng, C. Liao, J. Kuang, Z. Xu, C. Yan, L. Chen, H. Zhao, and Z. Liu, Nanostructure magneto-optical thin films of rare earth (RE= Gd, Tb, Dy) doped cobalt spinel by sol–gel synthesis. J. Appl. Phys. 85(5), 2782–2786 (1999).

Article  CAS  Google Scholar 

R.K. Kotnala and J. Jyoti Shah, Green hydroelectrical energy source based on water dissociation by nanoporous ferrite. Int. J. Energy Res. 40(12), 1652–1661 (2016).

Article  Google Scholar 

J. Shah, R. Gupta, and R.K. Kotnala, Colossal humidoresistance inducement in magnesium ferrite thin film led to green energy device invention: hydroelectric cell, in Recent Advances in Thin Films (2020), pp. 389–411.

R.K. Kotnala, R. Gupta, A. Shukla, S. Jain, A. Gaur, and J. Shah, Metal oxide based hydroelectric cell for electricity generation by water molecule dissociation without electrolyte/acid. J. Phys. Chem. C 122(33), 18841–18849 (2018).

Article  CAS  Google Scholar 

S. Jain, J. Shah, N.S. Negi, C. Sharma, and R.K. Kotnala, Significance of interface barrier at electrode of hematite hydroelectric cell for generating ecopower by water splitting. Int. J. Energy Res. 43(9), 4743–4755 (2019).

Article  CAS  Google Scholar 

S. Saini, J. Shah, R.K. Kotnala, and K.L. Yadav, Nickel substituted oxygen deficient nanoporous lithium ferrite based green energy device hydroelectric cell. J. Alloys Compd. 827, 154334 (2020).

Article  CAS  Google Scholar 

P. Jain, S. Subramanian, and O.P. Thakur, Advancements in multiferroic, dielectric, and impedance properties of copper-yttrium Co-doped cobalt ferrite for hydroelectric cell applications. J. Phys. Condens. Matter 36, 295201 (2024).

Article  Google Scholar 

D.T. Rahardjo, S. Budiawanti, S. Suharno, R. Suryana, A. Supriyanto, and B. Purnama, Effect of yttrium-doping on structural and magnetic properties in cobalt ferrite nanoparticles prepared by the sol–gel auto-combustion procedure, in AIP Conference Proceedings, vol. 2604, no. 1 (AIP Publishing, 2023).

A. Joshi, R.C. Srivastava, R. Dhyani, and C.S. Joshi, Structural, magnetic, and dielectric properties of yttrium-doped cobalt ferrite and their nanocomposites with polythiophene. J. Magn. Magn. Mater. 578, 170812 (2023).

Article  CAS  Google Scholar 

V.R. Bhagwat, A.V. Humbe, S.D. More, and K.M. Jadhav, Sol–gel auto-combustion synthesis and characterizations of cobalt ferrite nanoparticles: different fuels approach. Mater. Sci. Eng. B 248, 114388 (2019).

Article  CAS  Google Scholar 

D. Narsimulu, O. Padmaraj, E.S. Srinadhu, and N. Satyanarayana, Synthesis, characterization and electrical properties of mesoporous nanocrystalline CoFe2O4 as a negative electrode material for lithium battery applications. J. Mater. Sci. Mater. Electron. 28, 17208–17214 (2017).

Article  CAS  Google Scholar 

M.F. Zawrah, M.M. El-Okr, A. Ashery, and A.B. Abou Hammad, Characterization of sol–gel fabricated cobalt ferrite CoFe2O4 nanoparticles. Middle East J. Appl. Sci. 6, 362–366 (2016).

Google Scholar 

M. Mostafa, O. Saleh, A.M. Henaish, S.A.A. El-Kaream, R. Ghazy, O.M. Hemeda, A.M. Dorgham, H. Al-Ghamdi, A.H. Almuqrin, M.I. Sayyed, S.V. Trukhanov, E.L. Trukhanova, A.V. Trukhanov, D. Zhou, and M.A. Darwish, Structure, morphology and electrical/magnetic properties of Ni-Mg nano-ferrites from a new perspective. Nanomaterials 12(7), 1045 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

T.E.P. Alves, H.V.S. Pessoni, and A. Franco Jr., The effect of Y3+ substitution on the structural, optical band-gap, and magnetic properties of cobalt ferrite nanoparticles. Phys. Chem. Chem. Phys. 19(25), 16395–16405 (2017).

Article  CAS  PubMed  Google Scholar 

S.B. Das, R.K. Singh, V. Kumar, N. Kumar, P. Singh, and N.K. Naik, Structural, magnetic, optical and ferroelectric properties of Y3+ substituted cobalt ferrite nanomaterials prepared by a cost-effective sol–gel route. Mater. Sci. Semicond. Process. 145, 106632 (2022).

Article  CAS  Google Scholar 

S. Kumari, V. Kumar, P. Kumar, M. Kar, and L. Kumar, Structural and magnetic properties of nanocrystalline yttrium substituted cobalt ferrite synthesized by the citrate precursor technique. Adv. Powder Technol. 26(1), 213–223 (2015).

Article  CAS  Google Scholar 

A. Kiran, M.N. Akhtar, M. Yousaf, K.M. Batoo, O.M. Aldossary, and S.N. Khan, Influence of Y3+, Yb3+, Gd3+ cations on structural and electromagnetic properties of CuFe2O4 nanoferrites prepared via one step sol–gel method. J. Rare Earths 39(10), 1224–1231 (2021).

Article  CAS  Google Scholar 

F.R. Mariosi, J. Venturini, A. da Cas Viegas, and C.P. Bergmann, Lanthanum-doped spinel cobalt ferrite (CoFe2O4) nanoparticles for environmental applications. Ceram. Int. 46(3), 2772–2779 (2020).

Article  CAS  Google Scholar 

S. Chakrabarty, A. Dutta, and M. Pal, Effect of yttrium-doping on structure, magnetic and electrical properties of nanocrystalline cobalt ferrite. J. Magn. Magn. Mater. 461, 69–75 (2018).

Article  CAS  Google Scholar 

M.A. Abdo, S.F. Mansour, N.S. Al-Bassami, and N.I. Abu-Elsaad, Yttrium substituted Co–Cu–Zn nanoferrite: a synergetic impact of Y3+ on enhanced physical properties and photocatalysis. Ceram. Int. 48(11), 15314–15326 (2022).

Article  CAS  Google Scholar 

C.N. Chinnasamy, M. Senoue, B. Jeyadevan, O. Perales-Perez, K. Shinoda, and K.T. Chinnasamy, Synthesis of size-controlled cobalt ferrite particles with high coercivity and squareness ratio. J. Colloid Interface Sci. 263(1), 80–83 (2003).

Article  CAS  PubMed  Google Scholar 

H. Hemanta Singh, E. Churchill Singh, and H. Basantakumar Sharma, Synthesis of yttrium and cobalt doped bismuth ferrite nanoparticles for electrical and magnetic properties. Integr. Ferroelectr. 203(1), 108–119 (2019).

Article  CAS  Google Scholar 

M.M. Rhaman, M.A. Matin, M.N. Hossain, M.N.I. Khan, M.A. Hakim, and M.F. Islam, Ferromagnetic, electric, and ferroelectric properties of samarium and cobalt Co-doped bismuth ferrite nanoparticles. J. Phys. Chem. Solids 147, 109607 (2020).

Article  CAS  Google Scholar 

I.A. Parray, A. Somvanshi, and S.A. Ali, Study of microstructural, ferroelectric and magnetic properties of cerium substituted magnesium ferrite and its potential application as hydroelectric cell. Ceram. Int. 49(4), 6946–6957 (2023).

Article  CAS  Google Scholar 

R.K. Singh, D. Rangappa, N. Kumar, J. Shah, V. Kumar, and R.K. Kotnala, Tailoring the physical properties of non-molar potassium-substituted magnesium ferrite nanomaterials and its applications in hydroelectric cell. Appl. Phys. A 129(1), 15 (2023).

Article  CAS  Google Scholar 

R.K. Kotnala, S. Saini, J. Shah, and K.L. Yadav, Significant role of defect-induced surface energy in water splitting to generate electricity by nickel ferrite hydroelectric cell. Int. J. Energy Res. 46(5), 6421–6435 (2022).

Article  CAS  Google Scholar 

P. Jain, S. Shankar, and O.P. Thakur, Unveiling the impact of Ni2+/Y3+ co-substitution on the structural, dielectric, and impedance properties of multiferroic spinel ferrite for hydroelectric cell application. Phys. Chem. Chem. Phys. 25(32), 21280–21296 (2023).

Article  CAS  PubMed  Google Scholar 

V. Kumar, R.K. Singh, A. Manash, S.B. Das, J. Shah, and R.K. Kotnala, Structural, optical and electrical behaviour of sodium-substituted magnesium nanoferrite for hydroelectric cell applications. Appl. Nanosci. 13(6), 4573–4591 (2023).

Article  CAS  Google Scholar 

I.A. Parray, S.A. Ali, R. Khan, J. Shah, and R.K. Kotnala, Green energy generation via water splitting by non-photocatalytic process based on Gd doped magnesium ferrite hydroelectric cell. Available at SSRN 4623639.

R. Gupta, J. Shah, R. Das, S. Saini, and R.K. Kotnala, Defect-mediated ionic hopping and green electricity generation in Al2–xMgxO3-based hydroelectric cell. J. Mater. Sci. 56, 1600–1611 (2021).

Article  CAS  Google Scholar 

J. Shah, K.C. Verma, A. Agarwal, and R.K. Kotnala, Novel application of multiferroic compound for green electricity generation fabricated as hydroelectric cell. Mater. Chem. Phys. 239, 122068 (2020).

Article  CAS  Google Scholar 

R.K. Kotnala, R. Das, J. Shah, S. Sharma, C. Sharma, and P.B. Sharma, Red mud industrial waste translated into green electricity production by innovating an ingenious process based on hydroelectric cell. J. Environ. Chem. Eng. 10(2), 107299 (2022).

留言 (0)

沒有登入
gif