Effect of Shocked Impact of 50 Scaling on the Structural, Morphological, Optical, and Electrical Properties of MMTC Crystals for Correlated Sensor, Photonic, and Piezoelectric Functionalities

M. Selvapandiyan, S. Sudhakar, and P. Sundaramoorthi, Crystal growth, structural, spectral and mechanical studies of pure and KI doped ZTS single crystals. J. Alloys Compd. 523, 25 (2012).

Article  CAS  Google Scholar 

Y. Wu and W. Bensch, Synthesis, crystal structures, and optical properties of NaCdPnS3 (Pn =As, Sb). J. Alloys Compd. 511, 35 (2012).

Article  CAS  Google Scholar 

P.W. Zukowski, S.B. Kantorow, D. Maczka, and V.F. Stelmakh, Processes of radiation defect interaction and amorphisation of silicon at large implantation doses. Phys. Status Solidi A 112(2), 695 (1989). https://doi.org/10.1002/pssa.2211120225.

Article  CAS  Google Scholar 

X.Q. Wang, D. Xu, M.K. Lu, D.R. Yuan, S.X. Xu, S.Y. Guo, G.H. Zhang, and J.R. Liu, Crystal growth and characterization of a novel organometallic nonlinear-optical crystal::MnHg(SCN)4(C2H6OS)2. J. Cryst. Growth (2001). https://doi.org/10.1016/S0022-0248(01)01012-0.

Article  Google Scholar 

D.G. Vargas-Pineda, T. Guardado, F. Cervantes-Lee, A.J. Meta-Magaña, and K.H. Pannell, Intermolecular Chalcogen-Tin Interactions in [(o- MeEC6H4)CH2]2SnPh2-nCln (E = S, O, CH2; n = 0, 1, 2) and intermolecular Chlorine – Tin Interactions in the meta- and para- Methoxy Isomers. Inorg. Chem. 49(3), 960 (2010). https://doi.org/10.1021/ic901800c.

Article  CAS  PubMed  PubMed Central  Google Scholar 

R.A. Varga, K. Jurkschat, and C. Silvestru, Solid-state structure and behavior in solution of hypervalent organotin(IV) derivatives containing 2-(Me2NCH2)C6H4 moieties. Eur. J. Inorg. Chem. (2008). https://doi.org/10.1002/ejic.200701044.

Article  Google Scholar 

Z. Rappoport, The chemistry of organic germanium, tin and lead compounds, Vol. 2 (UK: Wiley, 2002).

Google Scholar 

R. Cea-Olivares, V. García-Montalvo, and M.M. Moya-Cabrera, The importance of the transannular secondary bonding strength in the molecular structures of metallocanes of type [X(CH2CH2Y)2MRR’] and [X(CH2CH2Y)2M’R] (M= Ge(IV), Sn(IV), Pb(IV), M’ = As(III), Sb(III) and Bi(III); X=NR”, O, S; Y=O, S). Coord. Chem. Rev. 249(7–8), 859 (2005). https://doi.org/10.1016/j.ccr.2004.10.002.

Article  CAS  Google Scholar 

M.P. Coles, M.S. Khalaf, and P.B. Hitchcock, A new aliphatic N, C, N’-pincer ligand with pendant guanidine groups. Inorg. Chim. Acta 422, 228 (2014).

Article  CAS  Google Scholar 

A.G. Davies, M. Gielen, K.H. Pannell, and E.R.T. Tiekink, Tin chemistry: fundamentals frontiers and applications (UK: Wiley, 2008).

Book  Google Scholar 

C. Pellerito, L. Nagy, L. Pellerito, and A. Szorcsik, Biological activity studies on organotin(IV)n+ complexes and parent compounds. J. Organomet. Chem. (2006). https://doi.org/10.1016/j.jorganchem.2005.12.025.

Article  Google Scholar 

J.E. Le Grognec, J.M. Chrétien, F. Zammattio, and J.P. Quintard, Methodologies limiting or avoiding contamination by organotin residues in organic synthesis. Chem. Rev. 115, 10207 (2015).

Article  PubMed  Google Scholar 

X.Q. Wang, X.F. Cheng, S.J. Zhang, D. Xu, G.H. Zhang, Z.H. Sun, F.P. Yu, X.J. Liu, W.L. Liu, and C.L. Chen, Single crystal growth, structural characterization, thermal and optical properties of a novel organometallic nonlinear optical crystal: MnHg(SCN)4(C2H5NO)2. Phys. B 405, 1071 (2010).

Article  CAS  Google Scholar 

X.Q. Wang, D. Xu, M.K. Lu, D.R. Yuan, J. Huang, G.W. Lu, G.H. Zhang, S.Y. Guo, H.X. Ning, X.L. Duan, Y. Chen, and Y.Q. Zhou, A systematic spectroscopic study of four bimetallic thiocyanates of chemical formula AB (SCN)4: ZnCd(SCN)4 and AHg(SCN)4 (A= Zn, Cd, Mn) as UV nonlinear optical crystal materials. Opt. Mater. 23, 335 (2003).

Article  Google Scholar 

X.Q. Wang, D. Xu, M.K. Lu, D.R. Yuan, G.H. Zhang, F.Q. Meng, S.Y. Guo, M. Zhou, J.R. Liu, and X.R. Li, Investigation of bimetallic thiocyanates belonging to ABTC structure type: ZnCd(SCN)4 and AHg(SCN)4 (A=Zn, Cd, Mn) as nonlinear optical crystal materials. Cryst. Res. Technol. 36, 73 (2001).

Article  Google Scholar 

X. Vasanth Winston and D. Sankar, Gamma ray-irradiated induced effects on SCN ligand-based MMTC single crystals for optoelectronic applications synthesized by SR method. J. Mater. Sci. Mater. Electron. (2022). https://doi.org/10.1007/s10854-022-08873-8.

Article  Google Scholar 

S. Barlow and S.R. Marder, Nonlinear optical properties of organic materials. Funct Org Mater: Synth, Strateg Appl. (2006). https://doi.org/10.1002/9783527610266.ch11.

Article  Google Scholar 

R. Josephine Usha, P. Sagayaraj, and V. Joseph, Linear and nonlinear optical, mechanical, electrical and surface of a novel nonlinear optical crystal: manganese mercury thiocyanate (MMTC). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. (2014). https://doi.org/10.1016/j.saa.2014.04.161.

Article  Google Scholar 

G.H. Gilmer, R. Ghez, and N. Cabrera, An analysis of combined surface and volume diffusion process in crystal growth. J. Cryst. Growth 8, 79 (1971).

Article  CAS  Google Scholar 

T. Rajesh Kumar, R. Jersld Vijay, R. Jeyasekaran, S. Selvakumar, M. Antony Arockiaraj, and P. Sagayaraj, Growth, linear and nonlinear optical and laser damage threshold studies of organometallic crystal of MnHg(SCN)4. Opt. Mater. 33, 1654 (2011).

Article  CAS  Google Scholar 

X. Wang, Xu. Dong, Lu. Mengkai, D. Yuan, X. Chang, S. Li, Ji. Huang, S. Wang, and H. Liu, Crystal growth, spectral and thermal properties of nonlinear optical crystal: MnHg(SCN)4. J. Crystal Growth. 245, 126 (2002).

Article  CAS  Google Scholar 

X. Liu, X. Wang, Z. Sun, X. Lin, Xu. Guanghui Zhang, and Dong, Study on micro-crystallization, growth, optical properties and defects of a nonlinear optical crystal: MnHg(SCN)4. J. Cryst. Growth 317, 92 (2011).

Article  CAS  Google Scholar 

R.K. Raju, S.M. Dharmaprakash, and H.S. Jayanna, Gamma irradiation effects on crystalline and optical properties of pure and doped Potassium hydrogen phthalate (KHP) single crystals. Optik 127, 11649 (2016).

Article  CAS  Google Scholar 

R. Hariharasuthan, K.S. Radha, Z. Abdul Vaheith et al., Electronic, nano-dielectric, mass and fluorescence spectral characterizations of 2-amino 4-methyl pyridinium fumarate novel crystals for use in opto-electronics and electronic displays. J. Mater. Sci. Mater. Electron. (2023). https://doi.org/10.1007/s10854-023-10158-7.

Article  Google Scholar 

V. Sathiya et al., Synthesis and studies of the zinc acetate (ZA)crystal for dielectric, nano-photonics and electronic applications. J. Mater. Sci. Mater. Electron. (2022). https://doi.org/10.1007/s10854-022-08787-5.

Article  Google Scholar 

K. SenthilKannan et al., Characterization of zinc acetate micro-crystals (ZAµ) and Co-60 irradiated micro-crystals (GZAµ) for photonic and electro-optic relevance. J. Mater. Sci. Mater. Electron. (2023). https://doi.org/10.1007/s10854-023-10550-3.

Article  Google Scholar 

A. Sivakumar, S.S.J. Dhas, S. Balachandar et al., Impact of shock waves on molecular and structural response of potassium dihydrogen phosphate crystal. J. Electron. Mater. (2019). https://doi.org/10.1007/s11664-019-07605-9.

Article  Google Scholar 

J.H. Joshi, S.A.M.B. Dhas, D.K. Kanchan et al., Tailoring the low dielectric constant in glutamic acid doped ammonium dihydrogen phosphate single crystal by virtue of MPa shock waves for microelectronic applications: the complex impedance and modulus formulation studies. J. Mater. Sci. Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-04048-5.

Article  Google Scholar 

R. Sakunthaladevi and L. Jothi, Chemical growth dynamics of 4-methyl-4’-hydroxy benzylidene aniline NLO single crystal structure and spectroscopic applications. J. Molecular structure. 1233, 130054 (2021).

Article  CAS  Google Scholar 

S. Boomadevi and R. Dhanasekaran, Synthesis, crystal growth and characterization of L-pyrrolidone-2-carboxylic acid (L-PCA) crystals. J. Crystal Growth 261, 70 (2004).

Article  CAS  Google Scholar 

S. Hinano, P.C. Kim, H. Orihara, H. Umeda, and Y. Ishibashi, Dielectric properties of hydrothermally grown gallium orthophosphate single crystals. J. Mater. Sci. 25, 2800 (1990).

Article  Google Scholar 

留言 (0)

沒有登入
gif