Mechanisms of autophagy–lysosome dysfunction in neurodegenerative diseases

Ross, C. A. & Poirier, M. A. Protein aggregation and neurodegenerative disease. Nat. Med. 10 Suppl, S10–S17 (2004).

Article  PubMed  Google Scholar 

Jayaraj, G. G., Hipp, M. S. & Hartl, F. U. Functional modules of the proteostasis network. Cold Spring Harb. Perspect. Biol. 12, 30833457 (2020).

Article  Google Scholar 

Nishida, Y. et al. Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature 461, 654–658 (2009).

Article  CAS  PubMed  Google Scholar 

Fleming, A. et al. The different autophagy degradation pathways and neurodegeneration. Neuron 110, 935–966 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bourdenx, M. et al. Chaperone-mediated autophagy prevents collapse of the neuronal metastable proteome. Cell 184, 2696–2714.e25 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, G. Y. & Sabatini, D. M. mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol. 21, 183–203 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Settembre, C. & Perera, R. M. Lysosomes as coordinators of cellular catabolism, metabolic signalling and organ physiology. Nat. Rev. Mol. Cell Biol. 25, 223–245 (2024).

Article  CAS  PubMed  Google Scholar 

Son, S. M. et al. Leucine signals to mTORC1 via its metabolite acetyl-coenzyme A. Cell Metab. 29, 192–201.e7 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Son, S. M. et al. Leucine regulates autophagy via acetylation of the mTORC1 component raptor. Nat. Commun. 11, 3148 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Korolchuk, V. I. et al. Lysosomal positioning coordinates cellular nutrient responses. Nat. Cell Biol. 13, 453–460 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ding, W. X. et al. Oncogenic transformation confers a selective susceptibility to the combined suppression of the proteasome and autophagy. Mol. Cancer Ther. 8, 2036–2045 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Korolchuk, V. I., Mansilla, A., Menzies, F. M. & Rubinsztein, D. C. Autophagy inhibition compromises degradation of ubiquitin–proteasome pathway substrates. Mol. Cell 33, 517–527 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ballabio, A. & Bonifacino, J. S. Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat. Rev. Mol. Cell Biol. 21, 101–118 (2020).

Article  CAS  PubMed  Google Scholar 

Ravikumar, B., Moreau, K., Jahreiss, L., Puri, C. & Rubinsztein, D. C. Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat. Cell Biol. 12, 747–757 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fraser, J. et al. Targeting of early endosomes by autophagy facilitates EGFR recycling and signalling. EMBO Rep. 20, e47734 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lees, M. B. Basic Neurochemistry 5th edn, Vol. 39 (Raven Press, 1994).

Lee, S., Sato, Y. & Nixon, R. A. Lysosomal proteolysis inhibition selectively disrupts axonal transport of degradative organelles and causes an Alzheimer’s-like axonal dystrophy. J. Neurosci. 31, 7817–7830 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lie, P. P. Y. et al. Post-Golgi carriers, not lysosomes, confer lysosomal properties to pre-degradative organelles in normal and dystrophic axons. Cell Rep. 35, 109034 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lie, P. P. Y. et al. Axonal transport of late endosomes and amphisomes is selectively modulated by local Ca2+ efflux and disrupted by PSEN1 loss of function. Sci. Adv. 8, eabj5716 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Overly, C. C. & Hollenbeck, P. J. Dynamic organization of endocytic pathways in axons of cultured sympathetic neurons. J. Neurosci. 16, 6056–6064 (1996).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yap, C. C., Mason, A. J. & Winckler, B. Dynamics and distribution of endosomes and lysosomes in dendrites. Curr. Opin. Neurobiol. 74, 102537 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lipka, J., Kuijpers, M., Jaworski, J. & Hoogenraad, C. C. Mutations in cytoplasmic dynein and its regulators cause malformations of cortical development and neurodegenerative diseases. Biochem. Soc. Trans. 41, 1605–1612 (2013).

Article  CAS  PubMed  Google Scholar 

Aranda-Anzaldo, A. The post-mitotic state in neurons correlates with a stable nuclear higher-order structure. Commun. Integr. Biol. 5, 134–139 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Plascencia-Villa, G. & Perry, G. Roles of oxidative stress in synaptic dysfunction and neuronal cell death in Alzheimer’s disease. Antioxid 12, 1628 (2023).

Article  CAS  Google Scholar 

Park, S. J. et al. Vinexin contributes to autophagic decline in brain ageing across species. Cell Death Differ. 29, 1055–1070 (2022).

Article  CAS  PubMed  Google Scholar 

Tsong, H., Holzbaur, E. L. & Stavoe, A. K. Aging differentially affects axonal autophagosome formation and maturation. Autophagy 19, 3079–3095 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carmona-Gutierrez, D., Hughes, A. L., Madeo, F. & Ruckenstuhl, C. The crucial impact of lysosomes in aging and longevity. Ageing Res. Rev. 32, 2–12 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hansen, M., Rubinsztein, D. C. & Walker, D. W. Autophagy as a promoter of longevity: insights from model organisms. Nat. Rev. Mol. Cell Biol. 19, 579–593 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burrinha, T. et al. Deacidification of endolysosomes by neuronal aging drives synapse loss. Traffic 24, 334–354 (2023).

Article  CAS  PubMed  Google Scholar 

Nixon, R. A. The aging lysosome: an essential catalyst for late-onset neurodegenerative diseases. Biochim. Biophys. Acta Proteins Proteom. 1868, 140443 (2020).

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif