PAI-1 Deficiency Promotes NET-mediated Pyroptosis and Ferroptosis during Pseudomonas Aeruginosa-induced Acute Lung Injury by Regulating the PI3K/MAPK/AKT Axis

Gorman, E.A., C.M. O’Kane, and D.F. McAuley. 2022. Acute respiratory distress syndrome in adults: Diagnosis, outcomes, long-term sequelae, and management. Lancet 400 (10358): 1157–1170. https://doi.org/10.1016/S0140-6736(22)01439-8.

Article  PubMed  Google Scholar 

Ashbaugh, D.G., et al. 1967. Acute respiratory distress in adults. Lancet 2 (7511): 319–23. https://doi.org/10.1016/s0140-6736(67)90168-7.

Article  CAS  PubMed  Google Scholar 

Shaver, C.M., and J.A. Bastarache. 2014. Clinical and biological heterogeneity in acute respiratory distress syndrome: Direct versus indirect lung injury. Clinics in Chest Medicine 35 (4): 639–653. https://doi.org/10.1016/j.ccm.2014.08.004.

Article  PubMed  PubMed Central  Google Scholar 

Huppert, L.A., M.A. Matthay, and L.B. Ware. 2019. Pathogenesis of Acute Respiratory Distress Syndrome. Semin Respir Crit Care Med 40 (1): 31–39. https://doi.org/10.1055/s-0039-1683996.

Article  PubMed  PubMed Central  Google Scholar 

Zhou, F., et al. 2020. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 395 (10229): 1054–1062. https://doi.org/10.1016/S0140-6736(20)30566-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Morrow, G.B., and N.J. Mutch. 2023. Past, Present, and Future Perspectives of Plasminogen Activator Inhibitor 1 (PAI-1). Seminars in Thrombosis and Hemostasis 49 (3): 305–313. https://doi.org/10.1055/s-0042-1758791.

Article  CAS  PubMed  Google Scholar 

Kang, S., et al. 2020. IL-6 trans-signaling induces plasminogen activator inhibitor-1 from vascular endothelial cells in cytokine release syndrome. Proc Natl Acad Sci U S A 117 (36): 22351–22356. https://doi.org/10.1073/pnas.2010229117.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vaughan, D.E., et al. 2017. Plasminogen Activator Inhibitor-1 Is a Marker and a Mediator of Senescence. Arteriosclerosis, Thrombosis, and Vascular Biology 37 (8): 1446–1452. https://doi.org/10.1161/ATVBAHA.117.309451.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yuan, H.X., et al. 2024. Endothelial extracellular vesicles induce acute lung injury via follistatin-like protein 1. Sci China Life Sci 67 (3): 475–487. https://doi.org/10.1007/s11427-022-2328-x.

Article  CAS  PubMed  Google Scholar 

Kruithof, E.K., C. Tran-Thang, and F. Bachmann. 1986. The fast-acting inhibitor of tissue-type plasminogen activator in plasma is also the primary plasma inhibitor of urokinase. Thrombosis and Haemostasis 55 (1): 65–69. https://doi.org/10.1055/s-0038-1661449.

Article  CAS  PubMed  Google Scholar 

Yatsenko, T., et al. 2023. Urokinase-type plasminogen activator and plasminogen activator inhibitor-1 complex as a serum biomarker for COVID-19. Frontiers in Immunology 14: 1299792. https://doi.org/10.3389/fimmu.2023.1299792.

Article  CAS  PubMed  Google Scholar 

Erickson, L.A., C.M. Hekman, and D.J. Loskutoff. 1985. The primary plasminogen-activator inhibitors in endothelial cells, platelets, serum, and plasma are immunologically related. Proc Natl Acad Sci U S A 82 (24): 8710–8714. https://doi.org/10.1073/pnas.82.24.8710.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Levin, E.G. 1986. Quantitation and properties of the active and latent plasminogen activator inhibitors in cultures of human endothelial cells. Blood 67 (5): 1309–1313. https://doi.org/10.1182/blood.V67.5.1309.1309.

Article  CAS  PubMed  Google Scholar 

Wang, B., et al. 2023. Good or bad: Paradox of plasminogen activator inhibitor 1 (PAI-1) in digestive system tumors. Cancer Letters 559: 216117. https://doi.org/10.1016/j.canlet.2023.216117.

Article  CAS  PubMed  Google Scholar 

Arcanjo, A., et al. 2021. Critically Ill Coronavirus Disease 2019 Patients Exhibit Hyperactive Cytokine Responses Associated With Effector Exhausted Senescent T Cells in Acute Infection. Journal of Infectious Diseases 224 (10): 1672–1683. https://doi.org/10.1093/infdis/jiab425.

Article  CAS  PubMed  Google Scholar 

Guimaraes-Costa, A.B., et al. 2009. Leishmania amazonensis promastigotes induce and are killed by neutrophil extracellular traps. Proc Natl Acad Sci U S A 106 (16): 6748–6753. https://doi.org/10.1073/pnas.0900226106.

Article  PubMed  PubMed Central  Google Scholar 

Rocha, J.D., et al. 2015. Capsular polysaccharides from Cryptococcus neoformans modulate production of neutrophil extracellular traps (NETs) by human neutrophils. Science and Reports 5: 8008. https://doi.org/10.1038/srep08008.

Article  CAS  Google Scholar 

Leppkes, M., et al. 2020. Vascular occlusion by neutrophil extracellular traps in COVID-19. eBioMedicine 58: 102925. https://doi.org/10.1016/j.ebiom.2020.102925.

Article  PubMed  PubMed Central  Google Scholar 

Su, R., et al. 2019. Mycobacterium tuberculosis Infection Induces Low-Density Granulocyte Generation by Promoting Neutrophil Extracellular Trap Formation via ROS Pathway. Frontiers in Microbiology 10: 1468. https://doi.org/10.3389/fmicb.2019.01468.

Article  PubMed  PubMed Central  Google Scholar 

de Bont, C.M., W.C. Boelens, and G.J.M. Pruijn. 2019. NETosis, complement, and coagulation: a triangular relationship. Cellular & Molecular Immunology 16 (1): 19–27. https://doi.org/10.1038/s41423-018-0024-0.

Article  CAS  Google Scholar 

Shi, J., W. Gao, and F. Shao. 2017. Pyroptosis: Gasdermin-Mediated Programmed Necrotic Cell Death. Trends in Biochemical Sciences 42 (4): 245–254. https://doi.org/10.1016/j.tibs.2016.10.004.

Article  CAS  PubMed  Google Scholar 

Feng, Y.D., et al. 2022. Old targets, new strategy: Apigenin-7-O-beta-d-(-6’’-p-coumaroyl)-glucopyranoside prevents endothelial ferroptosis and alleviates intestinal ischemia-reperfusion injury through HO-1 and MAO-B inhibition. Free Radical Biology & Medicine 184: 74–88. https://doi.org/10.1016/j.freeradbiomed.2022.03.033.

Article  CAS  Google Scholar 

Jia, J., et al. 2022. Ferritin triggers neutrophil extracellular trap-mediated cytokine storm through Msr1 contributing to adult-onset Still’s disease pathogenesis. Nature Communications 13 (1): 6804. https://doi.org/10.1038/s41467-022-34560-7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, H., et al. 2023. METTL3-mediated N6-methyladenosine exacerbates ferroptosis via m6A-IGF2BP2-dependent mitochondrial metabolic reprogramming in sepsis-induced acute lung injury. Clinical and Translational Medicine 13 (9): e1389. https://doi.org/10.1002/ctm2.1389.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, Y., et al. 2020. Protective Effects of Pterostilbene on Lipopolysaccharide-Induced Acute Lung Injury in Mice by Inhibiting NF-kappaB and Activating Nrf2/HO-1 Signaling Pathways. Frontiers in Pharmacology 11: 591836. https://doi.org/10.3389/fphar.2020.591836.

Article  CAS  PubMed  Google Scholar 

Rao, H., et al. 2022. Ibrutinib Prevents Acute Lung Injury via Multi-Targeting BTK, FLT3 and EGFR in Mice. International Journal of Molecular Sciences 23 (21): 13478. https://doi.org/10.3390/ijms232113478.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoh, B.L., et al. 2018. Estrogen Deficiency Promotes Cerebral Aneurysm Rupture by Upregulation of Th17 Cells and Interleukin-17A Which Downregulates E-Cadherin. Journal of the American Heart Association 7 (8): e008863. https://doi.org/10.1161/JAHA.118.008863.

Article  CAS  PubMed  PubMe

留言 (0)

沒有登入
gif