Exome sequencing in undiagnosed congenital myopathy reveals new genes and refines genes–phenotypes correlations

Amburgey K, McNamara N, Bennett LR, McCormick ME, Acsadi G, Dowling JJ. Prevalence of congenital myopathies in a representative pediatric united states population. Ann Neurol. 2011;70:662–5.

Article  PubMed  Google Scholar 

North KN, Wang CH, Clarke N, Jungbluth H, Vainzof M, Dowling JJ, et al. Approach to the diagnosis of congenital myopathies. Neuromuscul Disord NMD. 2014;24:97–116.

Article  PubMed  Google Scholar 

Wang CH, Dowling JJ, North K, Schroth MK, Sejersen T, Shapiro F, et al. Consensus statement on standard of care for congenital myopathies. J Child Neurol. 2012;27:363–82.

Article  PubMed  PubMed Central  Google Scholar 

Nicolau S, Liewluck T, Tracy JA, Laughlin RS, Milone M. Congenital myopathies in the adult neuromuscular clinic. Neurol Genet. 2019;5:e341.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Papadimas GK, Xirou S, Kararizou E, Papadopoulos C. Update on congenital myopathies in adulthood. Int J Mol Sci. 2020;21:3694.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pinto MJ, Passos BA, Grangeia A, Guimarães J, Braz L. Congenital myopathies in adults: a diagnosis not to overlook. Acta Neurol Scand. 2022;146:152–9.

Article  PubMed  Google Scholar 

Kaplan J-C, Hamroun D. The 2013 version of the gene table of monogenic neuromuscular disorders (nuclear genome). Neuromuscul Disord NMD. 2012;22:1108–35.

Article  PubMed  Google Scholar 

Benarroch L, Bonne G, Rivier F, Hamroun D. The 2023 version of the gene table of neuromuscular disorders (nuclear genome). Neuromuscul Disord NMD. 2023;33:76–117.

Article  PubMed  Google Scholar 

Vasli N, Laporte J. Impacts of massively parallel sequencing for genetic diagnosis of neuromuscular disorders. Acta Neuropathol (Berl). 2013;125:173–85.

Article  CAS  PubMed  Google Scholar 

Vasli N, Böhm J, Le Gras S, Muller J, Pizot C, Jost B, et al. Next generation sequencing for molecular diagnosis of neuromuscular diseases. Acta Neuropathol (Berl). 2012;124:273–83.

Article  CAS  PubMed  Google Scholar 

Schartner V, Romero NB, Donkervoort S, Treves S, Munot P, Pierson TM, et al. Dihydropyridine receptor (DHPR, CACNA1S) congenital myopathy. Acta Neuropathol (Berl). 2017;133:517–33.

Article  CAS  PubMed  Google Scholar 

Geoffroy V, Pizot C, Redin C, Piton A, Vasli N, Stoetzel C, et al. VaRank: a simple and powerful tool for ranking genetic variants. PeerJ. 2015;3:e796.

Article  PubMed  PubMed Central  Google Scholar 

Ng PC, Henikoff S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003;31:3812–4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7:248–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yeo G, Burge CB. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J Comput Biol J Comput Mol Cell Biol. 2004;11:377–94.

Article  CAS  Google Scholar 

Reese MG, Eeckman FH, Kulp D, Haussler D. Improved splice site detection in Genie. J Comput Biol J Comput Mol Cell Biol. 1997;4:311–23.

Article  CAS  Google Scholar 

Shapiro MB, Senapathy P. RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Res. 1987;15:7155–74.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetic and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.

Article  PubMed  PubMed Central  Google Scholar 

Pedersen BS, Bhetariya PJ, Brown J, Kravitz SN, Marth G, Jensen RL, et al. Somalier: rapid relatedness estimation for cancer and germline studies using efficient genome sketches. Genome Med. 2020;12:62.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Böhm J, Chevessier F, Maues De Paula A, Koch C, Attarian S, Feger C, et al. Constitutive activation of the calcium sensor STIM1 causes tubular-aggregate myopathy. Am J Hum Genet. 2013;92:271–8.

Article  PubMed  PubMed Central  Google Scholar 

Böhm J, Bulla M, Urquhart JE, Malfatti E, Williams SG, O’Sullivan J, et al. ORAI1 Mutations with distinct channel gating defects in tubular aggregate myopathy. Hum Mutat. 2017;38:426–38.

Article  PubMed  Google Scholar 

Böhm J, Lornage X, Chevessier F, Birck C, Zanotti S, Cudia P, et al. CASQ1 mutations impair calsequestrin polymerization and cause tubular aggregate myopathy. Acta Neuropathol (Berl). 2018;135:149–51.

Article  PubMed  Google Scholar 

O’Grady GL, Best HA, Sztal TE, Schartner V, Sanjuan-Vazquez M, Donkervoort S, et al. Variants in the oxidoreductase PYROXD1 cause early-onset myopathy with internalized nuclei and myofibrillar disorganization. Am J Hum Genet. 2016;99:1086–105.

Article  PubMed  PubMed Central  Google Scholar 

Vasli N, Harris E, Karamchandani J, Bareke E, Majewski J, Romero NB, et al. Recessive mutations in the kinase ZAK cause a congenital myopathy with fibre type disproportion. Brain J Neurol. 2017;140:37–48.

Article  Google Scholar 

Donkervoort S, Kutzner CE, Hu Y, Lornage X, Rendu J, Stojkovic T, et al. Pathogenic variants in the myosin chaperone UNC-45B cause progressive myopathy with eccentric cores. Am J Hum Genet. 2020;107:1078–95.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Malfatti E, Böhm J, Lacène E, Beuvin M, Romero NB, Laporte J. A premature stop codon in MYO18B is associated with severe nemaline myopathy with cardiomyopathy. J Neuromuscul Dis. 2015;2:219–27.

Article  PubMed  PubMed Central  Google Scholar 

Lornage X, Romero NB, Grosgogeat CA, Malfatti E, Donkervoort S, Marchetti MM, et al. ACTN2 mutations cause “Multiple structured Core Disease” (MsCD). Acta Neuropathol (Berl). 2019;137:501–19.

Article  CAS  PubMed  Google Scholar 

Foley AR, Zou Y, Dunford JE, Rooney J, Chandra G, Xiong H, et al. GGPS1 mutations cause muscular dystrophy/hearing loss/ovarian insufficiency syndrome. Ann Neurol. 2020;88:332–47.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Töpf A, Cox DT, Zaharieva I, Di Leo V, Sarparanta J, Harald Jonson P, et al. Digenic inheritance involving a muscle specific protein kinase and the giant titin protein causes a skeletal muscle myopathy. Nat Genet. 2024;56:395–407.

Article  PubMed  PubMed Central  Google Scholar 

Lornage X, Quijano-Roy S, Amthor H, Carlier RY, Monnier N, Deleuze J-F, et al. Asymmetric muscle weakness due to ACTA1 mosaic mutations. Neurology. 2020;95:e3406–11.

Article  CAS  PubMed  Google Scholar 

Biancalana V, Rendu J, Chaussenot A, Mecili H, Bieth E, Fradin M, et al. A recurrent RYR1 mutation associated with early-onset hypotonia and benign disease course. Acta Neuropathol Commun. 2021;9:155.

Article  CAS 

留言 (0)

沒有登入
gif