Engineering circular RNA for molecular and metabolic reprogramming

Abdelmohsen K, Panda AC, Munk R, Grammatikakis I, Dudekula DB, De S, Kim J, Noh JH, Kim KM, Martindale JL (2017) Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol 14:361–369

Article  PubMed  PubMed Central  Google Scholar 

Abdullah SW, Wu J, Wang X, Guo H, Sun S (2023) Advances and breakthroughs in IRES-Directed translation and replication of Picornaviruses. mBio 14:e0035823. https://doi.org/10.1128/mbio.0035823

Article  PubMed  Google Scholar 

AbouHaidar MG, Venkataraman S, Golshani A, Liu B, Ahmad T (2014) Novel coding, translation, and gene expression of a replicating covalently closed circular RNA of 220 nt. Proc Natl Acad Sci U S A 111:14542–14547. https://doi.org/10.1073/pnas.1402814111

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amaya L, Grigoryan L, Li Z, Lee A, Wender PA, Pulendran B, Chang HY (2023) Circular RNA vaccine induces potent T cell responses. Proc Natl Acad Sci U S A 120:e2302191120. https://doi.org/10.1073/pnas.2302191120

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N, Kadener S (2014) circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56:55–66

Article  CAS  PubMed  Google Scholar 

Awan FM, Yang BB, Naz A, Hanif A, Ikram A, Obaid A, Malik A, Janjua HA, Ali A, Sharif S (2021) The emerging role and significance of circular RNAs in viral infections and antiviral immune responses: possible implication as theranostic agents. RNA Biol 18:1–15. https://doi.org/10.1080/15476286.2020.1790198

Article  CAS  PubMed  Google Scholar 

Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, Diemert D, Spector SA, Rouphael N, Creech CB (2021) Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med 384:403–416

Article  CAS  PubMed  Google Scholar 

Barakat S, Ezen E, Devecioglu I, Gezen M, Piepoli S, Erman B (2023) Dimerization choice and alternative functions of ZBTB transcription factors. FEBS J https://doi.org/10.1111/febs.16905

Article  Google Scholar 

Barrett SP, Salzman J (2016) Circular RNAs: analysis, expression and potential functions. Development 143:1838–1847. https://doi.org/10.1242/dev.128074

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barrett SP, Wang PL, Salzman J (2015) Circular RNA biogenesis can proceed through an exon-containing lariat precursor. Elife 4:e07540. https://doi.org/10.7554/eLife.07540

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barrett SP, Parker KR, Horn C, Mata M, Salzman J (2017) ciRS-7 exonic sequence is embedded in a long non-coding RNA locus. PLoS Genet 13:e1007114. https://doi.org/10.1371/journal.pgen.1007114

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bennett CF, Swayze EE (2010) RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu Rev Pharmacol Toxicol 50:259–293. https://doi.org/10.1146/annurev.pharmtox.010909.105654

Article  CAS  PubMed  Google Scholar 

Burd CE, Jeck WR, Liu Y, Sanoff HK, Wang Z, Sharpless NE (2010) Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet 6:e1001233. https://doi.org/10.1371/journal.pgen.1001233

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen C-y, Sarnow P (1995) Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science 268:415–417

Article  CAS  PubMed  Google Scholar 

Chen LL, Yang L (2015) Regulation of circRNA biogenesis. RNA Biol 12:381–388. https://doi.org/10.1080/15476286.2015.1020271

Article  PubMed  PubMed Central  Google Scholar 

Chen L, Watson C, Morsch M, Cole NJ, Chung RS, Saunders DN, Yerbury JJ, Vine KL (2017a) Improving the delivery of SOD1 antisense oligonucleotides to motor neurons using calcium phosphate-lipid nanoparticles. Front Neurosci 11:476. https://doi.org/10.3389/fnins.2017.00476

Article  PubMed  PubMed Central  Google Scholar 

Chen YG, Kim MV, Chen X, Batista PJ, Aoyama S, Wilusz JE, Iwasaki A, Chang HY (2017b) Sensing self and foreign circular RNAs by Intron Identity. Mol Cell 67:228–238e225. https://doi.org/10.1016/j.molcel.2017.05.022

Chen L, Nan A, Zhang N, Jia Y, Li X, Ling Y, Dai J, Zhang S, Yang Q, Yi Y, Jiang Y (2019a) Circular RNA 100146 functions as an oncogene through direct binding to mir-361-3p and mir-615-5p in non-small cell lung cancer. Mol Cancer 18:13. https://doi.org/10.1186/s12943-019-0943-0

Article  PubMed  PubMed Central  Google Scholar 

Chen YG, Chen R, Ahmad S, Verma R, Kasturi SP, Amaya L, Broughton JP, Kim J, Cadena C, Pulendran B, Hur S, Chang HY (2019b) N6-Methyladenosine modification controls circular RNA immunity. Mol Cell 76:96–109e109. https://doi.org/10.1016/j.molcel.2019.07.016

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Q, Mang G, Wu J, Sun P, Li T, Zhang H, Wang N, Tong Z, Wang W, Zheng Y (2020a) Circular RNA circSnx5 controls immunogenicity of dendritic cells through the miR-544/SOCS1 axis and PU. 1 activity regulation. Mol Ther 28:2503–2518

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen X, Jiang C, Sun R, Yang D, Liu Q (2020b) Circular noncoding RNA NR3C1 acts as a mir-382-5p sponge to protect RPE functions via regulating PTEN/AKT/mTOR signaling pathway. Mol Ther 28:929–945

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen CK, Cheng R, Demeter J, Chen J, Weingarten-Gabbay S, Jiang L, Snyder MP, Weissman JS, Segal E, Jackson PK, Chang HY (2021) Structured elements drive extensive circular RNA translation. Mol Cell 81:4300–4318e4313. https://doi.org/10.1016/j.molcel.2021.07.042

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen R, Wang SK, Belk JA, Amaya L, Li Z, Cardenas A, Abe BT, Chen CK, Wender PA, Chang HY (2023) Engineering circular RNA for enhanced protein production. Nat Biotechnol 41:262–272. https://doi.org/10.1038/s41587-022-01393-0

Article  CAS  PubMed  Google Scholar 

Cheong C-G, Hall TMT (2006) Engineering RNA sequence specificity of Pumilio repeats. Proc Natl Acad Sci 103:13635–13639

Article  CAS  PubMed  PubMed Central  Google Scholar 

Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, Roslan S, Schreiber AW, Gregory PA, Goodall GJ (2015) The RNA binding protein quaking regulates formation of circRNAs. Cell 160:1125–1134

Article  CAS  PubMed  Google Scholar 

Conn VM, Hugouvieux V, Nayak A, Conos SA, Capovilla G, Cildir G, Jourdain A, Tergaonkar V, Schmid M, Zubieta C, Conn SJ (2017) A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation. Nat Plants 3:17053. https://doi.org/10.1038/nplants.2017.53

Article  CAS  PubMed  Google Scholar 

Darbelli L, Richard S (2016) Emerging functions of the quaking RNA-binding proteins and link to human diseases. Wiley Interdisciplinary Reviews: RNA 7:399–412

Article  CAS  PubMed  Google Scholar 

de Breyne S, Yu Y, Unbehaun A, Pestova TV, Hellen CU (2009) Direct functional interaction of initiation factor eIF4G with type 1 internal ribosomal entry sites. Proceedings of the National Academy of Sciences 106:9197–9202

Dey SK, Filonov GS, Olarerin-George AO, Jackson BT, Finley LWS, Jaffrey SR (2022) Repurposing an adenine riboswitch into a fluorogenic imaging and sensing tag. Nat Chem Biol 18:180–190. https://doi.org/10.1038/s41589-021-00925-0

留言 (0)

沒有登入
gif