RUNX3 exerts tumor-suppressive role through inhibiting EXOSC4 expression

Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100(7):3983–3988. https://doi.org/10.1073/pnas.0530291100

Article  CAS  PubMed  PubMed Central  Google Scholar 

Britigan EMC, Wan J, Sam DK, Copeland SE, Lasek AL, Hrycyniak LCF, Wang L, Audhya A, Burkard ME, Roopra A et al (2022) Increased Aurora B expression reduces substrate phosphorylation and induces chromosomal instability. Front Cell Dev Biol 10:1018161. https://doi.org/10.3389/fcell.2022.1018161

Article  PubMed  PubMed Central  Google Scholar 

Brouwer R, Allmang C, Raijmakers R, van Aarssen Y, Egberts WV, Petfalski E, van Venrooij WJ, Tollervey D, Pruijn GJ (2001) Three novel components of the human exosome. J Biol Chem 276(9):6177–6184. https://doi.org/10.1074/jbc.M007603200

Article  CAS  PubMed  Google Scholar 

Chen LF (2012) Tumor suppressor function of RUNX3 in breast cancer. J Cell Biochem 113(5):1470–1477. https://doi.org/10.1002/jcb.24074

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chimge NO, Little GH, Baniwal SK, Adisetiyo H, Xie Y, Zhang T, O’Laughlin A, Liu ZY, Ulrich P, Martin A et al (2016) RUNX1 prevents oestrogen-mediated AXIN1 suppression and β-catenin activation in ER-positive breast cancer. Nat Commun 7:10751. https://doi.org/10.1038/ncomms10751

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cordenonsi M, Zanconato F, Azzolin L, Forcato M, Rosato A, Frasson C, Inui M, Montagner M, Parenti AR, Poletti A et al (2011) The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell 147(4):759–772. https://doi.org/10.1016/j.cell.2011.09.048

Article  CAS  PubMed  Google Scholar 

Cui K, Gong L, Zhang H, Chen Y, Liu B, Gong Z, Li J, Wang Y, Sun S, Li Y et al (2022) EXOSC8 promotes colorectal cancer tumorigenesis via regulating ribosome biogenesis-related processes. Oncogene 41(50):5397–5410. https://doi.org/10.1038/s41388-022-02530-4

Article  CAS  PubMed  Google Scholar 

DeSantis CE, Ma J, Gaudet MM, Newman LA, Miller KD, Goding Sauer A, Jemal A, Siegel RL (2019) Breast cancer statistics, 2019. CA Cancer J Clin 69(6):438–451. https://doi.org/10.3322/caac.21583

Article  PubMed  Google Scholar 

Fritz AJ, Hong D, Boyd J, Kost J, Finstaad KH, Fitzgerald MP, Hanna S, Abuarqoub AH, Malik M, Bushweller J et al (2020) RUNX1 and RUNX2 transcription factors function in opposing roles to regulate breast cancer stem cells. J Cell Physiol 235(10):7261–7272. https://doi.org/10.1002/jcp.29625

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1(5):555–567. https://doi.org/10.1016/j.stem.2007.08.014

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gupta PB, Pastushenko I, Skibinski A, Blanpain C, Kuperwasser C (2019) Phenotypic plasticity: driver of cancer initiation, progression, and therapy resistance. Cell Stem Cell 24(1):65–78. https://doi.org/10.1016/j.stem.2018.11.011

Article  CAS  PubMed  Google Scholar 

Huang B, Qu Z, Ong CW, Tsang YH, Xiao G, Shapiro D, Salto-Tellez M, Ito K, Ito Y, Chen LF (2012) RUNX3 acts as a tumor suppressor in breast cancer by targeting estrogen receptor α. Oncogene 31(4):527–534. https://doi.org/10.1038/onc.2011.252

Article  CAS  PubMed  Google Scholar 

Jeselsohn R, Cornwell M, Pun M, Buchwalter G, Nguyen M, Bango C, Huang Y, Kuang Y, Paweletz C, Fu X et al (2017) Embryonic transcription factor SOX9 drives breast cancer endocrine resistance. Proc Natl Acad Sci U S A 114(22):E4482-e4491. https://doi.org/10.1073/pnas.1620993114

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kulkarni M, Tan TZ, Syed Sulaiman NB, Lamar JM, Bansal P, Cui J, Qiao Y, Ito Y (2018) RUNX1 and RUNX3 protect against YAP-mediated EMT, stem-ness and shorter survival outcomes in breast cancer. Oncotarget 9(18):14175–14192. https://doi.org/10.18632/oncotarget.24419

Article  PubMed  PubMed Central  Google Scholar 

Lamb R, Ablett MP, Spence K, Landberg G, Sims AH, Clarke RB (2013) Wnt pathway activity in breast cancer sub-types and stem-like cells. PLoS One 8(7):e67811. https://doi.org/10.1371/journal.pone.0067811

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lau QC, Raja E, Salto-Tellez M, Liu Q, Ito K, Inoue M, Putti TC, Loh M, Ko TK, Huang C et al (2006) RUNX3 is frequently inactivated by dual mechanisms of protein mislocalization and promoter hypermethylation in breast cancer. Can Res 66(13):6512–6520. https://doi.org/10.1158/0008-5472.CAN-06-0369

Article  CAS  Google Scholar 

Li XQ, Lu JT, Tan CC, Wang QS, Feng YM (2016) RUNX2 promotes breast cancer bone metastasis by increasing integrin α5-mediated colonization. Cancer Lett 380(1):78–86. https://doi.org/10.1016/j.canlet.2016.06.007

Article  CAS  PubMed  Google Scholar 

Liang C, Zhang Z, Chen Q, Yan H, Zhang M, Zhou L, Xu J, Lu W, Wang F (2020) Centromere-localized Aurora B kinase is required for the fidelity of chromosome segregation. J Cell Biol 219(2). https://doi.org/10.1083/jcb.201907092

Liu H, Yan Z, Yin Q, Cao K, Wei Y, Rodriguez-Canales J, Ma D, Wu Y (2018) RUNX3 epigenetic inactivation is associated with estrogen receptor positive breast cancer. J Histochem Cytochem Off J Histochem Soc 66(10):709–721. https://doi.org/10.1369/0022155418797315

Article  CAS  Google Scholar 

Liu H, Chen C, Ma D, Li Y, Yin Q, Li Q, Xiang C (2020) Inhibition of PIM1 attenuates the stem cell-like traits of breast cancer cells by promoting RUNX3 nuclear retention. J Cell Mol Med 24(11):6308–6323. https://doi.org/10.1111/jcmm.15272

Lund AH, van Lohuizen M (2002) RUNX: a trilogy of cancer genes. Cancer Cell 1(3):213–215. https://doi.org/10.1016/s1535-6108(02)00049-1

Article  CAS  PubMed  Google Scholar 

Modi S, Jacot W, Yamashita T, Sohn J, Vidal M, Tokunaga E, Tsurutani J, Ueno NT, Prat A, Chae YS et al (2022) Trastuzumab deruxtecan in previously treated HER2-low advanced breast cancer. N Engl J Med 387(1):9–20. https://doi.org/10.1056/NEJMoa2203690

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pan H, Gray R, Braybrooke J, Davies C, Taylor C, McGale P, Peto R, Pritchard KI, Bergh J, Dowsett M et al (2017) 20-Year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years. N Engl J Med 377(19):1836–1846. https://doi.org/10.1056/NEJMoa1701830

Article  PubMed  PubMed Central  Google Scholar 

Pan Y, Tong JHM, Kang W, Lung RWM, Chak WP, Chung LY, Wu F, Li H, Yu J, Chan AWH et al (2018) EXOSC4 functions as a potential oncogene in development and progression of colorectal cancer. Mol Carcinog 57(12):1780–1791. https://doi.org/10.1002/mc.22896

Article  CAS  PubMed  Google Scholar 

Park SY, Kwon HJ, Lee HE, Ryu HS, Kim SW, Kim JH, Kim IA, Jung N, Cho NY, Kang GH (2011) Promoter CpG island hypermethylation during breast cancer progression. Virchows Arch 458(1):73–84. https://doi.org/10.1007/s00428-010-1013-6

Article  CAS  PubMed  Google Scholar 

Park SY, Kwon HJ, Choi Y, Lee HE, Kim SW, Kim JH, Kim IA, Jung N, Cho NY, Kang GH (2012) Distinct patterns of promoter CpG island methylation of breast cancer subtypes are associated with stem cell phenotypes. Mod Pathol 25(2):185–196. https://doi.org/10.1038/modpathol.2011.160

Article  CAS  PubMed  Google Scholar 

Paul AM, Amjesh R, George B, Sankaran D, Sandiford OA, Rameshwar P, Pillai MR, Kumar R (2022) The revelation of continuously organized, co-overexpressed protein-coding genes with roles in cellular communications in breast cancer. Cells 11(23). https://doi.org/10.3390/cells11233806

Sakunrangsit N, Ketchart W (2019) Plumbagin inhibits cancer stem-like cells, angiogenesis and suppresses cell proliferation and invasion by targeting Wnt/β-catenin pathway in endocrine resistant breast cancer. Pharmacol Res 150:104517. https://doi.org/10.1016/j.phrs.2019.104517

Article  CAS  PubMed 

留言 (0)

沒有登入
gif