Heme Oxygenase-1, Cardiac Senescence, and Myocardial Infarction: A Critical Review of the Triptych

Shan H, Li T, Zhang L, Yang R, et al. Heme oxygenase-1 prevents heart against myocardial infarction by attenuating ischemic injury-induced cardiomyocytes senescence. EBioMedicine. 2019;39:59–68. https://doi.org/10.1016/j.ebiom.2018.11.056.

Article  PubMed  Google Scholar 

Coburn RF, Williams WJ, Kahn SB. Endogenous carbon monoxide production in patients with hemolytic anemia. J Clin Investig. 1966;45(4):460–8. https://doi.org/10.1172/JCI105360.

Article  CAS  PubMed  PubMed Central  Google Scholar 

He JZ, Ho JJD, Gingerich S, et al. Enhanced translation of heme oxygenase-2 preserves human endothelial cell viability during hypoxia. J Biol Chem. 2010;285(13):9452–61. https://doi.org/10.1074/jbc.M109.077230.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun J, Hoshino H, Takaku K, et al. Hemoprotein Bach1 regulates enhancer availability of heme oxygenase-1 gene. The EMBO J. 2002;21(19):5216–24. https://doi.org/10.1093/emboj/cdf516.

Article  CAS  PubMed  Google Scholar 

Yet SF, Tian R, Layne MD, et al. Cardiac-specific expression of heme oxygenase-1 protects against ischemia and reperfusion injury in transgenic mice. Circulation research. 2001;89(2):168–73. https://doi.org/10.1161/hh1401.093314.

Article  CAS  PubMed  Google Scholar 

Otterbein LE, Foresti R, Motterlini R. heme oxygenase-1 and carbon monoxide in the heart: the balancing act between danger signaling and pro-survival. Circulation research. 2016;118(12):1940–59. https://doi.org/10.1161/CIRCRESAHA.116.306588.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sharma HS, Maulik N, Gho BC, et al. Coordinated expression of heme oxygenase-1 and ubiquitin in the porcine heart subjected to ischemia and reperfusion. Molecular and cellular biochemistry. 1996;157(1–2):111–6. https://doi.org/10.1007/BF00227888.

Article  CAS  PubMed  Google Scholar 

Liu X, Simpson JA, Brunt KR, et al. Preemptive heme oxygenase-1 gene delivery reveals reduced mortality and preservation of left ventricular function 1 yr after acute myocardial infarction. Am J Physiol Heart Circ Physiol. 2007;293(1):H48–59. https://doi.org/10.1152/ajpheart.00741.2006.

Article  CAS  PubMed  Google Scholar 

Li, Q., Guo, Y., Ou, Q., et al. Gene transfer as a strategy to achieve permanent cardioprotection II: rAAV-mediated gene therapy with heme oxygenase-1 limits infarct size 1 year later without adverse functional consequences. Basic Res Cardiol, 106(6), 1367–1377. https://doi.org/10.1007/s00395-011-0208-6

Hinkel R, Lange P, Petersen B, et al. Heme oxygenase-1 gene therapy provides cardioprotection via control of post-ischemic inflammation: an experimental study in a pre-clinical pig model. J Am College Cardiol. 2015;66(2):154–65. https://doi.org/10.1016/j.jacc.2015.04.064.

Article  CAS  Google Scholar 

Otterbein LE, Foresti R, Motterlini R. Heme oxygenase-1 and carbon monoxide in the heart: the balancing act between danger signaling and pro-survival. Circ Res. 2016;118(12):1940–59. https://doi.org/10.1161/CIRCRESAHA.116.306588.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clark JE, Naughton P, Shurey S, et al. Cardioprotective actions by a water-soluble carbon monoxide-releasing molecule. Circ Res. 2003;93(2):e2–8. https://doi.org/10.1161/01.RES.0000084381.86567.08.

Article  CAS  PubMed  Google Scholar 

Hopkins PN, Wu LL, Hunt SC, et al. Higher serum bilirubin is associated with decreased risk for early familial coronary artery disease. Arteriosclerosis Thrombosis Vasc Biol. 1996;16(2):250–5. https://doi.org/10.1161/01.atv.16.2.250.

Article  CAS  Google Scholar 

Allwood MA, Kinobe RT, Ballantyne L, et al. Heme oxygenase-1 overexpression exacerbates heart failure with aging and pressure overload but is protective against isoproterenol-induced cardiomyopathy in mice. Cardiovasc Pathol : Official J Soc Cardiovasc Pathol. 2014;23(4):231–7. https://doi.org/10.1016/j.carpath.2014.03.007.

Article  CAS  Google Scholar 

Wang G, Hamid T, Keith RJ, et al. Cardioprotective and antiapoptotic effects of heme oxygenase-1 in the failing heart. Circulation. 2010;121(17):1912–25. https://doi.org/10.1161/CIRCULATIONAHA.109.905471.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yamada N, Yamaya M, Okinaga S, et al. Microsatellite polymorphism in the heme oxygenase-1 gene promoter is associated with susceptibility to emphysema. Am J Human Gen. 2000;66(1):187–95.

Article  CAS  Google Scholar 

Chen YH, Lin SJ, Lin MW, et al. Microsatellite polymorphism in promoter of heme oxygenase-1 gene is associated with susceptibility to coronary artery disease in type 2 diabetic patients. Human genetics. 2014;111:1–8.

Article  Google Scholar 

Exner M, Schillinger M, Minar E, et al. Heme oxygenase-1 gene promoter microsatellite polymorphism is associated with restenosis after percutaneous transluminal angioplasty. J Endovasc Ther. 2001;8(5):433–40.

Article  CAS  PubMed  Google Scholar 

Tiroch K, Koch W, von Beckerath N, et al. Heme oxygenase-1 gene promoter polymorphism and restenosis following coronary stenting. Euro Heart J. 2007;28(8):968–73.

Article  CAS  Google Scholar 

Courtney AE, McNamee PT, Middleton D, et al. Association of functional heme oxygenase-1 gene promoter polymorphism with renal transplantation outcomes. Am J Transpl. 2007;7(4):908–13.

Article  CAS  Google Scholar 

Ono K, Goto Y, Takagi S, et al. A promoter variant of the heme oxygenase-1 gene may reduce the incidence of ischemic heart disease in Japanese. Atherosclerosis. 2004;173(2):313–7.

Article  Google Scholar 

Abraham NG, Junge JM, Drummond GS. Translational Significance of Heme Oxygenase in Obesity and Metabolic Syndrome. Trends Pharmacol Sci. 2016;37(1):17–36. https://doi.org/10.1016/j.tips.2015.09.003.

Article  CAS  PubMed  Google Scholar 

Pechlaner R, Willeit P, Summerer M, et al. Heme oxygenase-1 gene promoter microsatellite polymorphism is associated with progressive atherosclerosis and incident cardiovascular disease. Arteriosclerosis, Thrombosis Vasc Biol. 2015;35(1):229–36.

Article  CAS  Google Scholar 

Gutiérrez-Cuevas J, Santos A, Armendariz-Borunda J. Pathophysiological Molecular Mechanisms of Obesity: A Link between MAFLD and NASH with Cardiovascular Diseases. Int J Mol Sci. 2021;22(21):11629. https://doi.org/10.3390/ijms222111629.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abraham NG, Kushida T, McClung J, et al. Heme oxygenase-1 attenuates glucose-mediated cell growth arrest and apoptosis in human microvessel endothelial cells. Circulation Research. 2003;93(6):507–14.

Article  CAS  PubMed  Google Scholar 

Abraham NG, Kappas A. Pharmacological and clinical aspects of heme oxygenase. Pharmacol Rev. 2008;60(1):79–127.

Article  CAS  PubMed  Google Scholar 

Abraham NG, Drummond GS, Lutton JD, et al. The biological significance and physiological role of heme oxygenase. Cell Physiol Biochem. 1996;6(3):129–68.

Article  CAS  Google Scholar 

Dennery PA, Spitz DR, Yang G, et al. Oxygen toxicity and iron accumulation in the lungs of mice lacking heme oxygenase-2. J Clin Investig. 1998;101(5):1001–11.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goodman AI, Chander PN, Rezzani R, et al. Heme oxygenase-2 deficiency contributes to diabetes-mediated increase in superoxide anion and renal dysfunction. J Am Soc Nephrol. 2006;17(4):1073–81.

Article  CAS  PubMed  Google Scholar 

Sodhi K, Inoue K, Gotlinger KH, et al. Epoxyeicosatrienoic acid agonist rescues the metabolic syndrome phenotype of HO-2-null mice. J Pharmacol Exp Therap. 2009;331(3):906–16.

Article  CAS  Google Scholar 

Roberts CK, Barnard RJ, Sindhu RK, et al. Oxidative stress and dysregulation of NAD (P) H oxidase and antioxidan

留言 (0)

沒有登入
gif