Advancements in Geopolymer Concrete: A State-of-the-Art Analysis of Its Mechanical and Durability Features

Abdullah MMAB, Faris MA, Tahir MFM, Kadir AA, Sandu AV, Mat Isa NAA, Corbu O (2017) Performance and characterization of geopolymer concrete reinforced with short steel fiber. IOP Conf Series: Mater Sci Eng 209(1):012038. https://doi.org/10.1088/1757-899X/209/1/012038

Article  Google Scholar 

Abhilash P, Sashidhar C, Reddy R (2008) Evaluation of performance of Geopolymer Concrete in acid environment. Int. Res J Eng Technol, 1433. www.irjet.net

Adak D, Mandal S (2019) Strength and durability performance of fly ash-based process-modified geopolymer concrete. J Mater Civ Eng 31(9):04019174. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002793

Article  Google Scholar 

Adak D, Sarkar M, Mandal S (2014) Effect of nano-silica on strength and durability of fly ash based geopolymer mortar. Constr Build Mater 70:453–459. https://doi.org/10.1016/J.CONBUILDMAT.2014.07.093

Article  Google Scholar 

Adam AA, Deviana L, Siregar APN, Mustofa. (2023) Water absorption of ambient-cured geopolymer concrete. IOP Conf Series: Earth and Environ Sci. https://doi.org/10.1088/1755-1315/1157/1/012025

Article  Google Scholar 

Ahmed HU, Mohammed AA, Rafiq S, Mohammed AS, Mosavi A, Sor NH, Qaidi SMA (2021) Compressive strength of sustainable geopolymer concrete composites: a state-of-the-art review. Sustainability 13(24):13502. https://doi.org/10.3390/SU132413502

Article  Google Scholar 

Alanazi H, Yang M, Zhang D, Gao Z (2016) Early strength and durability of metakaolin-based geopolymer concrete. Magazine of Concrete Res 69(1):46–54. https://doi.org/10.1680/JMACR.16.00118

Article  Google Scholar 

Al-Azzawi M, Yu T, Hadi MNS (2018) Factors Affecting the bond strength between the fly ash-based geopolymer concrete and steel reinforcement. Structures 14:262–272. https://doi.org/10.1016/J.ISTRUC.2018.03.010

Article  Google Scholar 

Albidah A, Alghannam M, Abbas H, Almusallam T, Al-Salloum Y (2021) Characteristics of metakaolin-based geopolymer concrete for different mix design parameters. J Market Res 10:84–98. https://doi.org/10.1016/J.JMRT.2020.11.104

Article  Google Scholar 

Albidah A, Alqarni AS, Abbas H, Almusallam T, Al-Salloum Y (2022) Behavior of Metakaolin-based geopolymer concrete at ambient and elevated temperatures. Constr Build Mater 317:125910. https://doi.org/10.1016/J.CONBUILDMAT.2021.125910

Article  Google Scholar 

Albitar M, Mohamed Ali MS, Visintin P, Drechsler M (2017) Durability evaluation of geopolymer and conventional concretes. Constr Build Mater 136:374–385. https://doi.org/10.1016/J.CONBUILDMAT.2017.01.056

Article  Google Scholar 

Albitar M, Visintin P, Mohamed Ali MS, Drechsler M (2015) Assessing behaviour of fresh and hardened geopolymer concrete mixed with class-F fly ash. KSCE J Civ Eng 19(5):1445–1455. https://doi.org/10.1007/S12205-014-1254-Z/METRICS

Article  Google Scholar 

Aliabdo AA, Abd Elmoaty AEM, Salem HA (2016) Effect of water addition, plasticizer and alkaline solution constitution on fly ash based geopolymer concrete performance. Constr Build Mater 121:694–703. https://doi.org/10.1016/J.CONBUILDMAT.2016.06.062

Article  Google Scholar 

Al-mashhadani MM, Canpolat O (2020) Effect of various NaOH molarities and various filling materials on the behavior of fly ash based geopolymer composites. Constr Build Mater 262:120560. https://doi.org/10.1016/J.CONBUILDMAT.2020.120560

Article  Google Scholar 

Al-mashhadani MM, Canpolat O, Aygörmez Y, Uysal M, Erdem S (2018) Mechanical and microstructural characterization of fiber reinforced fly ash based geopolymer composites. Constr Build Mater 167:505–513. https://doi.org/10.1016/J.CONBUILDMAT.2018.02.061

Article  Google Scholar 

Althoey F, Zaid O, Alsulamy S, Martínez-García R, De Prado Gil J, Arbili MM (2023) Determining engineering properties of ultra-high-performance fiber-reinforced geopolymer concrete modified with different waste materials. PLoS ONE 18(5):e0285692. https://doi.org/10.1371/JOURNAL.PONE.0285692

Article  Google Scholar 

Alzeebaree R, Çevik A, Nematollahi B, Sanjayan J, Mohammedameen A, Gülşan ME (2019) Mechanical properties and durability of unconfined and confined geopolymer concrete with fiber reinforced polymers exposed to sulfuric acid. Constr Build Mater 215:1015–1032. https://doi.org/10.1016/J.CONBUILDMAT.2019.04.165

Article  Google Scholar 

Amorim Júnior NS, Andrade Neto JS, Santana HA, Cilla MS, Ribeiro DV (2021) Durability and service life analysis of metakaolin-based geopolymer concretes with respect to chloride penetration using chloride migration test and corrosion potential. Constr Build Mater 287:122970. https://doi.org/10.1016/J.CONBUILDMAT.2021.122970

Article  Google Scholar 

Amran M, Debbarma S, Ozbakkaloglu T (2021) Fly ash-based eco-friendly geopolymer concrete: a critical review of the long-term durability properties. Constr Build Mater 270:121857. https://doi.org/10.1016/J.CONBUILDMAT.2020.121857

Article  Google Scholar 

Annapurna D, Kishore R, Anil K (2020) Effect of Different aggregates on alkali silica reaction of geopolymer. Concrete. https://doi.org/10.1007/978-3-030-24314-2_2

Article  Google Scholar 

Arham A, Sc AM (2009) Strength and durability properties of alkali activated slag and fly ash-based geopolymer concrete. https://researchrepository.rmit.edu.au/esploro/outputs/9921861379101341

Azarsa P, Gupta R (2020) Comparative study involving effect of curing regime on elastic modulus of geopolymer concrete. Buildings 10(6):101. https://doi.org/10.3390/BUILDINGS10060101

Article  Google Scholar 

Aziz IH, Abdullah MMAB, Mohd Salleh MAA, Azimi EA, Chaiprapa J, Sandu AV (2020) Strength development of solely ground granulated blast furnace slag geopolymers. Constr Build Mater 250:118720. https://doi.org/10.1016/J.CONBUILDMAT.2020.118720

Article  Google Scholar 

Bahmani H, Mostofinejad D (2023) A review of engineering properties of ultra-high-performance geopolymer concrete. Develop Built Environ 14:100126. https://doi.org/10.1016/J.DIBE.2023.100126

Article  Google Scholar 

Bakharev T (2005) Resistance of geopolymer materials to acid attack. Cem Concr Res 35(4):658–670. https://doi.org/10.1016/J.CEMCONRES.2004.06.005

Article  Google Scholar 

Barbosa VFF, MacKenzie KJD, Thaumaturgo C (2000) Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers. Int J Inorg Mater 2(4):309–317. https://doi.org/10.1016/S1466-6049(00)00041-6

Article  Google Scholar 

Bellum RR, Muniraj K, Madduru SRC (2020) Characteristic evaluation of geopolymer concrete for the development of road network: sustainable infrastructure. Innovative Infrastruct Solutions 5(3):1–19. https://doi.org/10.1007/S41062-020-00344-5/METRICS

Article  Google Scholar 

Bellum RR, Venkatesh C, Madduru SRC (2021) Influence of red mud on performance enhancement of fly ash-based geopolymer concrete. Innovative Infrastruct Solutions 6(4):1–9. https://doi.org/10.1007/S41062-021-00578-X/METRICS

Article  Google Scholar 

Bernal SA, Mejía De Gutiérrez R, Provis JL (2012) Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends. Constr Build Mater 33:99–108. https://doi.org/10.1016/J.CONBUILDMAT.2012.01.017

Article  Google Scholar 

Billong N, Kinuthia J, Oti J, Melo UC (2018) Performance of sodium silicate free geopolymers from metakaolin (MK) and Rice Husk Ash (RHA): effect on tensile strength and microstructure. Constr Build Mater 189:307–313. https://doi.org/10.1016/J.CONBUILDMAT.2018.09.001

Article  Google Scholar 

Çelik Aİ, Özbayrak A, Şener A, Acar MC (2022) Effect of activators in different ratios on compressive strength of geopolymer concrete. Can J Civil Eng 50(2):69–79. https://doi.org/10.1139/CJCE-2021-0529

Article  Google Scholar 

Chindaprasirt P, Chalee W (2014) Effect of sodium hydroxide concentration on chloride penetration and steel corrosion of fly ash-based geopolymer concrete under marine site. Constr Build Mater 63:303–310. https://doi.org/10.1016/J.CONBUILDMAT.2014.04.010

Article  Google Scholar 

Chindaprasirt P, De Silva P, Sagoe-Crentsil K, Hanjitsuwan S (2012) Effect of SiO 2 and Al 2O 3on the setting and hardening of high calcium fly ash-based geopolymer systems. J Mater Sci 47(12):4876–4883. https://doi.org/10.1007/S10853-012-6353-Y/TABLES/4

Article  Google Scholar 

Chindaprasirt P, Lao-un J, Zaetang Y, Wongkvanklom A, Phoo-ngernkham T, Wongsa A, Sata V (2022) Thermal insulating and fire resistance performances of geopolymer mortar containing auto glass waste as fine aggregate. J Build Eng 60:105178. https://doi.org/10.1016/J.JOBE.2022.105178

Article  Google Scholar 

Chindaprasirt P, Rukzon S (2008) Strength, porosity and corrosion resistance of ternary blend Portland cement, rice husk ash and fly ash mortar. Constr Build Mater 22(8):1601–1606. https://doi.org/10.1016/J.CONBUILDMAT.2007.06.010

Article  Google Scholar 

Chithambaram SJ, Kumar S, Prasad MM, Adak D (2018) Effect of parameters on the compressive strength of fly ash based geopolymer concrete. Struct Concr 19(4):1202–1209. https://doi.org/10.1002/SUCO.201700235

Article  Google Scholar 

Chouksey A, Verma M, Dev N, Rahman I, Upreti K (2022) An investigation on the effect of curing conditions on the mechanical and microstructural properties of the geopolymer concrete. Mater Res Exp 9(5):055003. https://doi.org/10.1088/2053-1591/AC6BE0

Article  Google Scholar 

Cizer O, Campforts J, van Balen K, Elsen J, van Gemert D (2006) Hardening of calcium hydroxide and calcium silicate binders due to carbonation and hydration. Brittle Matrix Compos 8:589–599. https://doi.org/10.1533/9780857093080.589

Article  Google Scholar 

留言 (0)

沒有登入
gif