New insight in molecular detection of Mycobacterium tuberculosis

Advani J, Verma R, Chatterjee O, Pachouri PK, Upadhyay P, Singh R, Yadav J, Naaz F, Ravikumar R, Buggi S (2019) Whole genome sequencing of Mycobacterium tuberculosis clinical isolates from India reveals genetic heterogeneity and region-specific variations that might affect drug susceptibility. Front Microbiol 10:309

Article  PubMed  PubMed Central  Google Scholar 

Akrami S, Dokht khosravi A, Hashemzadeh M (2023) Drug resistance profiles and related gene mutations in slow-growing non-tuberculous mycobacteria isolated in regional tuberculosis reference laboratories of Iran: a three year cross-sectional study. Pathogens Global Health 117(1):52–62

Article  CAS  PubMed  Google Scholar 

Alexander J, Hembach N, Schwartz T (2022) Identification of critical control points for antibiotic resistance discharge in sewers. Sci Total Environ 820:153186. https://doi.org/10.1016/j.scitotenv.2022.153186

Article  CAS  PubMed  Google Scholar 

Asres A, Jerene D, Deressa W (2018) Pre-and post-diagnosis costs of tuberculosis to patients on directly observed treatment short course in districts of southwestern Ethiopia: a longitudinal study. J Health Popul Nutr 37(1):1–11

Article  Google Scholar 

Baert L, McClure P, Winkler A, Karn J, Bouwknegt M, Klijn A (2021) Guidance document on the use of whole genome sequencing (WGS) for source tracking from a food industry perspective. Food Control 130:108148

Article  CAS  Google Scholar 

Bagratee TJ, Studholme DJ (2024) Targeted genome sequencing for tuberculosis drug susceptibility testing in South Africa: a proposed diagnostic pipeline. Access Microbiol 6(2). https://doi.org/10.1099/acmi.0.000740.v3

Bahraminia F, Zangiabadian M, Nasiri MJ, Fattahi M, Goudarzi M, Ranjbar R, Fooladi I, A. A (2021) Rifampicin resistance in Mycobacterium tuberculosis in Iran: a two-centre study. New Microbes New Infect 42:100909. https://doi.org/10.1016/j.nmni.2021.100909

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bakhtiyariniya P, Khosravi AD, Hashemzadeh M, Savari M (2022) Genetic diversity of drug-resistant Mycobacterium tuberculosis clinical isolates from Khuzestan Province, Iran. AMB Express 12(1):85

Article  CAS  PubMed  PubMed Central  Google Scholar 

Banada PP, Sivasubramani SK, Blakemore R, Boehme C, Perkins MD, Fennelly K, Alland D (2010) Containment of bioaerosol infection risk by the Xpert MTB/RIF assay and its applicability to point-of-care settings. J Clin Microbiol 48(10):3551–3557

Article  PubMed  PubMed Central  Google Scholar 

Barba M, Czosnek H, Hadidi A (2014) Historical perspective, development and applications of next-generation sequencing in plant virology. Viruses 6(1):106–136. https://doi.org/10.3390/v6010106

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barnard M, Albert H, Coetzee G, O’Brien R, Bosman ME (2008) Rapid molecular screening for multidrug-resistant tuberculosis in a high-volume public health laboratory in South Africa. Am J Respir Crit Care Med 177(7):787–792

Article  PubMed  Google Scholar 

Basamed J, Alamoudi K (2023) Prevalence of tuberculosis in Hadramout Al-Sahel, Yemen: A 1-year cross-sectional study. Yemen J Med. 2(1):33–36

Article  Google Scholar 

Behzadi P, Ranjbar R (2019) DNA microarray technology and bioinformatic web services. Acta Microbiol Immunol Hung 66(1):19–30. https://doi.org/10.1556/030.65.2018.028

Article  CAS  PubMed  Google Scholar 

Behzadi P, Behzadi E, Ranjbar R (2014) Microarray data analysis. Challenge 7(2):8–19

Google Scholar 

Bergmann JS, Yuoh G, Fish G, Woods GL (1999) Clinical evaluation of the enhanced Gen-Probe Amplified Mycobacterium Tuberculosis Direct Test for rapid diagnosis of tuberculosis in prison inmates. J Clin Microbiol 37(5):1419–1425. https://doi.org/10.1128/jcm.37.5.1419-1425.1999

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beviere M, Reissier S, Penven M, Dejoies L, Guerin F, Cattoir V, Piau C (2023) The role of next-generation sequencing (NGS) in the management of tuberculosis: practical review for implementation in routine. Pathogens 12(8):978

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blakemore R, Nabeta P, Davidow AL, Vadwai V, Tahirli R, Munsamy V, Nicol M, Jones M, Persing DH, Hillemann D (2011) A multisite assessment of the quantitative capabilities of the Xpert MTB/RIF assay. Am J Respir Crit Care Med 184(9):1076–1084

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bloemberg GV, Voit A, Ritter C, Deggim V, Böttger EC (2013) Evaluation of Cobas TaqMan MTB for direct detection of the Mycobacterium tuberculosis complex in comparison with Cobas Amplicor MTB. J Clin Microbiol 51(7):2112–2117

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boehme CC, Nabeta P, Hillemann D, Nicol MP, Shenai S, Krapp F, Allen J, Tahirli R, Blakemore R, Rustomjee R (2010) Rapid molecular detection of tuberculosis and rifampin resistance. N Engl J Med 363(11):1005–1015

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bojang AL, Mendy FS, Tientcheu LD, Otu J, Antonio M, Kampmann B, Agbla S, Sutherland JS (2016) Comparison of TB-LAMP, GeneXpert MTB/RIF and culture for diagnosis of pulmonary tuberculosis in the Gambia. J Infect 72(3):332–337

Article  PubMed  Google Scholar 

Brambilla D, Sola L, Chiari M (2021) Advantageous antibody microarray fabrication through DNA-directed immobilization: a step toward use of extracellular vesicles in diagnostics. Talanta 222:121542

Article  CAS  PubMed  Google Scholar 

Bunsow E, Ruiz-Serrano MJ, Roa PL, Kestler M, Viedma DG, Bouza E (2014) Evaluation of GeneXpert MTB/RIF for the detection of Mycobacterium tuberculosis and resistance to rifampin in clinical specimens. J Infect 68(4):338–343

Article  PubMed  Google Scholar 

Butcher PD (2004) Microarrays for Mycobacterium tuberculosis. Tuberculosis (Edinb) 84(3–4):131–137. https://doi.org/10.1016/j.tube.2004.01.002

Article  CAS  PubMed  Google Scholar 

Bwanga F, Hoffner S, Haile M, Joloba ML (2009) Direct susceptibility testing for multi drug resistant tuberculosis: a meta-analysis. BMC Infect Dis 9(1):1–15

Article  Google Scholar 

Castan P, de Pablo A, Fernández-Romero N, Rubio JM, Cobb BD, Mingorance J, Toro C (2014) Point-of-care system for detection of Mycobacterium tuberculosis and rifampin resistance in sputum samples. J Clin Microbiol 52(2):502–507

Article  PubMed  PubMed Central  Google Scholar 

Causse M, Ruiz P, Gutiérrez-Aroca JB, Casal M (2011) Comparison of two molecular methods for rapid diagnosis of extrapulmonary tuberculosis. J Clin Microbiol 49(8):3065–3067

Article  PubMed  PubMed Central  Google Scholar 

Caws M, Tho DQ, Duy PM, Lan NT, Hoa DV, Torok ME, Chau TT, Chau NV, Chinh NT, Farrar J (2007) PCR-restriction fragment length polymorphism for rapid, low-cost identification of isoniazid-resistant Mycobacterium tuberculosis. J Clin Microbiol 45(6):1789–1793. https://doi.org/10.1128/jcm.01960-06

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chakravorty S, Simmons Ann M, Rowneki M, Parmar H, Cao Y, Ryan J, Banada Padmapriya P, Deshpande S, Shenai S, Gall A, Glass J, Krieswirth B, Schumacher Samuel G, Nabeta P, Tukvadze N, Rodrigues C, Skrahina A, Tagliani E, Cirillo Daniela M, Alland D (2017) The New Xpert MTB/RIF Ultra: improving detection of Mycobacterium tuberculosis and Resistance to Rifampin in an assay suitable for point-of-care testing. MBio. https://doi.org/10.1128/mbio.00812-00817

Article  PubMed  PubMed Central  Google Scholar 

Chen C, Lu B, Huang X, Bi C, Zhao L, Hu Y, Chen X, Lin S, Huang K (2021) A Python script to merge Sanger sequences. PeerJ 9:e11354. https://doi.org/10.7717/peerj.11354

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen G, Qin CJ, Wu MZ, Wu BB, Luo WR, Zhuang H, He XY, Liu SS (2022) Clinical application of rt-pcr in tuberculosis DNA detectioncombined with tb-igra in the diagnosis of sputum smear-negative pulmonarytuberculosis. Acta Clin Croat. 61(2):193–197

PubMed 

留言 (0)

沒有登入
gif