Defluorination of monofluorinated alkane by Rhodococcus sp. NJF-7 isolated from soil

Alexandrino DAM, Ribeiro I, Pinto LM, Cambra R, Oliveira RS, Pereira F, Carvalho MF (2018) Biodegradation of mono-, di- and trifluoroacetate by microbial cultures with different origins. N Biotechnol 43:23–29. https://doi.org/10.1016/j.nbt.2017.08.005

Article  CAS  PubMed  Google Scholar 

Baker JL, Sudarsan N, Weinberg Z, Roth A, Stockbridge RB, Breaker RR (2012) Widespread genetic switches and toxicity resistance proteins for fluoride. Science 335:233–235. https://doi.org/10.1126/science.1215063

Article  CAS  PubMed  Google Scholar 

Bygd MD, Aukema KG, Richman JE, Wackett LP (2022) Microwell fluoride screen for chemical, enzymatic, and cellular reactions reveal latent microbial defluorination capacity for -CF3 groups. Appl Environ Microbiol 88:e00288–e00222. https://doi.org/10.1128/aem.00288-22

Article  CAS  PubMed  PubMed Central  Google Scholar 

Calero P, Gurdo N, Nikel PI (2022) Role of the crcB transporter of pseudomonas putida in the multi-level stress response elicited by mineral fluoride. Environ Microbiol 24:5082–5104. https://doi.org/10.1111/1462-2920.16110

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cappelletti M, Presentato A, Milazzo G, Turner RJ, Fedi S, Frascari D, Zannoni D (2015) Growth of Rhodococcus sp. Strain BCP1 on gaseous n-alkanes: New metabolic insights and transcriptional analysis of two soluble di-iron monooxygenase genes. Front Microbiol 6:393. https://doi.org/10.3389/fmicb.2015.00393

Article  PubMed  PubMed Central  Google Scholar 

Carvalho MF, Oliveira RS (2017) Natural production of fluorinated compounds and biotechnological prospects of the fluorinase enzyme. Crit Rev Biotechnol 37:880–897. https://doi.org/10.1080/07388551.2016.1267109

Article  CAS  PubMed  Google Scholar 

Castro AR, Rocha I, Alves MM, Pereira MA (2016) Rhodococcus opacus B4: a promising bacterium for production of biofuels and biobased chemicals. AMB Express 6:35. https://doi.org/10.1186/s13568-016-0207-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Che S, Jin BS, Liu ZK, Yu YC, Liu JY, Men YJ (2021) Structure-specific aerobic defluorination of short-chain fluorinated carboxylic acids by activated sludge communities. Environ Sci Technol Lett 8:668–674. https://doi.org/10.1021/acs.estlett.1c00511

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cui B, Jia S, Tokunaga E, Shibata N (2018) Defluorosilylation of fluoroarenes and fluoroalkanes. Nat Commun 9:4393. https://doi.org/10.1038/s41467-018-06830-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Carvalho CCCR, Wick LY, Heipieper HJ (2009) Cell wall adaptations of planktonic and biofilm Rhodococcus erythropolis cells to growth on C5 to C16 n-alkane hydrocarbons. Appl Microbiol Biotechnol 82:311–320. https://doi.org/10.1007/s00253-008-1809-3

Article  CAS  PubMed  Google Scholar 

Diao MX, Li C, Li JX, Lu J, Xie NZ (2022) Probing the biotransformation process of sclareol by resting cells of Hyphozyma Roseonigra. J Agric Food Chem 70:10563–10570. https://doi.org/10.1021/acs.jafc.2c04651

Article  CAS  PubMed  Google Scholar 

Donnelly C, Murphy CD (2009) Purification and properties of fluoroacetate dehalogenase from Pseudomonas fluorescens DSM 8341. Biotechnol Lett 31:245–250. https://doi.org/10.1007/s10529-008-9849-4

Article  CAS  PubMed  Google Scholar 

Emelyanova EV, Ramanaiah SV, Prisyazhnaya NV, Shumkova ES, Plotnikova EG, Wu Y, Solyanikova IP (2023) The contribution of Actinobacteria to the degradation of Chlorinated compounds: variations in the activity of key degradation enzymes. Microorganisms 11(1):141. https://doi.org/10.3390/microorganisms11010141

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hassanshahian M, Ahmadinejad M, Tebyanian H, Kariminik A (2013) Isolation and characterization of alkane degrading bacteria from petroleum reservoir waste water in Iran (Kerman and Tehran provenances). Mar Pollut Bull 73:300–305. https://doi.org/10.1016/j.marpolbul.2013.05.002

Article  CAS  PubMed  Google Scholar 

Huang L, Wang W, Zhang S, Tang S, Zhao P, Ye Q (2017) Bioaccumulation and bound-residue formation of 14C-decabromodiphenyl ether in an earthworm-soil system. J Hazard Mater 321:591–599. https://doi.org/10.1016/j.jhazmat.2016.09.041

Article  CAS  PubMed  Google Scholar 

Ivshina I, Kostina L, Krivoruchko A, Kuyukina M, Peshkur T, Anderson P, Cunningham C (2016) Removal of polycyclic aromatic hydrocarbons in soil spiked with model mixtures of petroleum hydrocarbons and heterocycles using biosurfactants from Rhodococcus ruber IEGM 231. J Hazard Mater 312:8–17. https://doi.org/10.1016/j.jhazmat.2016.03.007

Article  CAS  PubMed  Google Scholar 

Ji C, Stockbridge RB, Miller C (2014) Bacterial fluoride resistance, Fluc channels, and the weak acid accumulation effect. J Gen Physiol 144:257–261. https://doi.org/10.1085/jgp.201411243

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jin BS, Zhu YW, Zhao WY, Liu ZK, Che S, Chen KP, Lin YH, Liu JY, Men YJ (2023) Aerobic biotransformation and defluorination of fluoroalkylether substances (ether PFAS): substrate specificity, pathways, and applications. Environ Sci Technol Lett 10:755–761. https://doi.org/10.1021/acs.estlett.3c00411

Article  CAS  PubMed  PubMed Central  Google Scholar 

Johnston NR, Strobel SA (2020) Principles of fluoride toxicity and the cellular response: a review. Arch Toxicol 94:1051–1069. https://doi.org/10.1007/s00204-020-02687-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kelly M (1965) Isolation of bacteria able to metabolize fluoroacetate or fluoroacetamide. Nature 208:809–810. https://doi.org/10.1038/208809a0

Article  CAS  PubMed  Google Scholar 

Khan MF, Chowdhary S, Koksch B, Murphy CD (2023) Biodegradation of amphipathic fluorinated peptides reveals a new bacterial defluorinating activity and a new source of natural organofluorine compounds. Environ Sci Technol 57:9762–9772. https://doi.org/10.1021/acs.est.3c01240

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kiel M, Engesser KH (2015) The biodegradation vs. biotransformation of fluorosubstituted aromatics. Appl Microbiol Biotechnol 99:7433–7464. https://doi.org/10.1007/s00253-015-6817-5

Article  CAS  PubMed  Google Scholar 

Kurihara T, Yamauchi T, Ichiyama S, Takahata H, Esaki N (2003) Purification, characterization, and gene cloning of a novel fluoroacetate dehalogenase from Burkholderia sp. FA1. J Mol Catal B: Enzym 23:347–355. https://doi.org/10.1016/s1381-1177(03)00098-5

Article  CAS  Google Scholar 

Lau C, Anitole K, Hodes C, Lai D, Pfahles-Hutchens A, Seed J (2007) Perfluoroalkyl acids: a review of monitoring and toxicological findings. Toxicol Sci 99:366–394. https://doi.org/10.1093/toxsci/kfm128

Article  CAS  PubMed  Google Scholar 

Leong LE, Denman SE, Hugenholtz P, McSweeney CS (2016) Amino acid and peptide utilization profiles of the fluoroacetate-degrading bacterium Synergistetes strain MFA1 under varying conditions. Microb Ecol 71:494–504. https://doi.org/10.1007/s00248-015-0641-4

Article  CAS  PubMed  Google Scholar 

Li S, Smith KD, Davis JH, Gordon PB, Breaker RR, Strobel SA (2013) Eukaryotic resistance to fluoride toxicity mediated by a widespread family of fluoride export proteins. Proc Natl Acad Sci U S A 110:19018–19023. https://doi.org/10.1073/pnas.1310439110

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif