The causal relationship and potential mediators between plasma lipids and atopic dermatitis: a bidirectional two-sample, two-step mendelian randomization

Barbarot S, Auziere S, Gadkari A, Girolomoni G, Puig L, Simpson EL, Margolis DJ, de Bruin-Weller M, Eckert L. Epidemiology of atopic dermatitis in adults: results from an international survey. Allergy. 2018;73:1284–93. https://doi.org/10.1111/all.13401.

Article  CAS  PubMed  Google Scholar 

Bieber T. Atopic dermatitis: an expanding therapeutic pipeline for a complex disease. Nat Rev Drug Discovery. 2022;21:21–40. https://doi.org/10.1038/s41573-021-00266-6.

Article  CAS  PubMed  Google Scholar 

Rerknimitr P, Otsuka A, Nakashima C, Kabashima K. The etiopathogenesis of atopic dermatitis: barrier disruption, immunological derangement, and pruritus. Inflamm Regeneration. 2017;37:14. https://doi.org/10.1186/s41232-017-0044-7.

Article  CAS  Google Scholar 

Li H, Zhang Z, Zhang H, Guo Y, Yao Z. Update on the Pathogenesis and therapy of atopic dermatitis. Clin Rev Allergy Immunol. 2021;61:324–38. https://doi.org/10.1007/s12016-021-08880-3.

Article  PubMed  Google Scholar 

Choi RH, Tatum SM, Symons JD, Summers SA, Holland WL. Ceramides and other sphingolipids as drivers of cardiovascular disease. Nat Reviews Cardiol. 2021;18:701–11. https://doi.org/10.1038/s41569-021-00536-1.

Article  CAS  Google Scholar 

Alessenko AV, Albi E. Exploring sphingolipid implications in Neurodegeneration. Front Neurol. 2020;11:437. https://doi.org/10.3389/fneur.2020.00437.

Article  PubMed  PubMed Central  Google Scholar 

Maceyka M, Spiegel S. Sphingolipid metabolites in inflammatory disease. Nature. 2014;510:58–67. https://doi.org/10.1038/nature13475.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Romanato G, Scarpa M, Angriman I, Faggian D, Ruffolo C, Marin R, Zambon S, Basato S, Zanoni S, Filosa T. Plasma lipids and inflammation in active inflammatory bowel diseases. Aliment Pharmacol Ther. 2009;29:298–307. https://doi.org/10.1111/j.1365-2036.2008.03886.x.

Article  CAS  PubMed  Google Scholar 

Myśliwiec H, Baran A, Harasim-Symbor E, Choromańska B, Myśliwiec P, Milewska AJ, Chabowski A, Flisiak I. Increase in circulating sphingosine-1-phosphate and decrease in ceramide levels in psoriatic patients. Arch Dermatol Res. 2017;309:79–86. https://doi.org/10.1007/s00403-016-1709-9.

Article  CAS  PubMed  Google Scholar 

Jungersted J, Scheer H, Mempel M, Baurecht H, Cifuentes L, Høgh J, Hellgren L, Jemec G, Agner T, Weidinger S. Stratum corneum lipids, skin barrier function and filaggrin mutations in patients with atopic eczema. Allergy. 2010;65:911–8.

Article  CAS  PubMed  Google Scholar 

Van Smeden J, Bouwstra JA. Stratum corneum lipids: their role for the skin barrier function in healthy subjects and atopic dermatitis patients. Skin Barrier Function. 2016;49:8–26. https://doi.org/10.1159/000441540.

Article  Google Scholar 

Sakai T, Herrmann N, Maintz L, Nümm TJ, Welchowski T, Claus RA, Gräler MH, Bieber T. Altered serum phospholipids in Atopic Dermatitis and Association with Clinical Status. JID Innovations. 2022;2:100092. https://doi.org/10.1016/j.xjidi.2021.100092.

Article  PubMed  Google Scholar 

Sanderson E, Glymour MM, Holmes MV, Kang H, Morrison J, Munafò MR, Palmer T, Schooling CM, Wallace C, Zhao Q, Davey Smith G. Mendelian randomization. Nat Reviews Methods Primers. 2022;2:6. https://doi.org/10.1038/s43586-021-00092-5.

Article  CAS  Google Scholar 

Davey Smith G, Ebrahim S. Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease?*. Int J Epidemiol. 2003;32:1–22. https://doi.org/10.1093/ije/dyg070.

Article  Google Scholar 

Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet. 2014;23:R89–98. https://doi.org/10.1093/hmg/ddu328.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ottensmann L, Tabassum R, Ruotsalainen SE, Gerl MJ, Klose C, Widén E, Simons K, Ripatti S, Pirinen M. Genome-wide association analysis of plasma lipidome identifies 495 genetic associations. Nat Commun. 2023;14:6934. https://doi.org/10.1038/s41467-023-42532-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao JH, Stacey D, Eriksson N, Macdonald-Dunlop E, Hedman ÅK, Kalnapenkis A, Enroth S, Cozzetto D, Digby-Bell J, Marten J, et al. Genetics of circulating inflammatory proteins identifies drivers of immune-mediated disease risk and therapeutic targets. Nat Immunol. 2023;24:1540–51. https://doi.org/10.1038/s41590-023-01588-w.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Budu-Aggrey A, Kilanowski A, Sobczyk MK, Shringarpure SS, Mitchell R, Reis K, Reigo A, Mägi R, Nelis M, Tanaka N, et al. European and multi-ancestry genome-wide association meta-analysis of atopic dermatitis highlights importance of systemic immune regulation. Nat Commun. 2023;14:6172. https://doi.org/10.1038/s41467-023-41180-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boef AGC, Dekkers OM, le Cessie S. Mendelian randomization studies: a review of the approaches used and the quality of reporting. Int J Epidemiol. 2015;44:496–511. https://doi.org/10.1093/ije/dyv071.

Article  PubMed  Google Scholar 

Lin SH, Brown DW, Machiela MJ. LDtrait: an Online Tool for identifying published phenotype associations in linkage disequilibrium. Cancer Res. 2020;80:3443–6. https://doi.org/10.1158/0008-5472.Can-20-0985.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ni Y, He A, Ye J, Lv W. The impact of air pollution on atopic dermatitis: a transethnic mendelian randomization study. J Eur Acad Dermatol Venereol. 2023. https://doi.org/10.1111/jdv.19675.

Article  PubMed  Google Scholar 

Burgess S, Thompson SG. Avoiding bias from weak instruments in mendelian randomization studies. Int J Epidemiol. 2011;40:755–64. https://doi.org/10.1093/ije/dyr036.

Article  PubMed  Google Scholar 

Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44:512–25. https://doi.org/10.1093/ije/dyv080.

Article  PubMed  PubMed Central  Google Scholar 

Thompson JR, Minelli C, Del Greco MF. Mendelian randomization using public data from genetic consortia. Int J Biostatistics. 2016;12:20150074. https://doi.org/10.1515/ijb-2015-0074.

Article  Google Scholar 

van der Veen JN, Kennelly JP, Wan S, Vance JE, Vance DE, Jacobs RL. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. Biochim et Biophys Acta (BBA) - Biomembr. 2017;1859:1558–72. https://doi.org/10.1016/j.bbamem.2017.04.006.

Article  CAS  Google Scholar 

Cui B, Ai R, Xu J, Ji G. Exploring the Phosphatidylcholine in Inflammatory Bowel Disease: Poten tial mechanisms and therapeutic interventions. Curr Pharm Design, 28:3486–91. https://doi.org/10.2174/1381612829666221124112803.

Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, DuGar B, Feldstein AE, Britt EB, Fu X, Chung Y-M, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57–63. https://doi.org/10.1038/nature09922.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schaefer EJ, Bongard V, Beiser AS, Lamon-Fava S, Robins SJ, Au R, Tucker KL, Kyle DJ, Wilson PW, Wolf PA. Plasma phosphatidylcholine docosahexaenoic acid content and risk of dementia and Alzheimer disease: the Framingham Heart Study. Arch Neurol. 2006;63:1545–50. https://doi.org/10.1001/archneur.63.11.1545.

Article  PubMed  Google Scholar 

Demirkan A, Isaacs A, Ugocsai P, Liebisch G, Struchalin M, Rudan I, Wilson JF, Pramstaller PP, Gyllensten U, Campbell H, et al. Plasma phosphatidylcholine and sphingomyelin concentrations are associated with depression and anxiety symptoms in a Dutch family-based lipidomics study. J Psychiatr Res. 2013;47:357–62. https://doi.org/10.1016/j.jpsychires.2012.11.001.

Article  PubMed 

留言 (0)

沒有登入
gif