The abnormalities of free fatty acid metabolism in patients with hypertrophic cardiomyopathy, a single-center retrospective observational study

Maron BJ, Maron MS. Hypertrophic cardiomyopathy. Lancet. 2013;381(9862):242 – 55. Epub 2012/08/10. https://doi.org/10.1016/s0140-6736(12)60397-3. PubMed PMID: 22874472.

Semsarian C, Ingles J, Maron MS, Maron BJ. New perspectives on the prevalence of hypertrophic cardiomyopathy. J Am Coll Cardiol. 2015;65(12):1249–54. https://doi.org/10.1016/j.jacc.2015.01.019. Epub 2015/03/31.

Article  PubMed  Google Scholar 

Ritterhoff J, Tian R. Metabolism in cardiomyopathy: every substrate matters. Cardiovasc Res. 2017;113(4):411–21. https://doi.org/10.1093/cvr/cvx017. Epub 2017/04/11.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ho CY, Day SM, Ashley EA, Michels M, Pereira AC, Jacoby D, et al. Genotype and lifetime burden of Disease in Hypertrophic Cardiomyopathy: insights from the Sarcomeric Human Cardiomyopathy Registry (SHaRe). Circulation. 2018;138(14):1387–98. https://doi.org/10.1161/circulationaha.117.033200. PubMed PMID: 30297972; PubMed Central PMCID: PMCPMC6170149. Epub 2018/10/10.

Article  PubMed  PubMed Central  Google Scholar 

Maron BJ, Bonow RO, Cannon RO 3rd, Leon MB, Epstein SE. Hypertrophic cardiomyopathy. Interrelations of clinical manifestations, pathophysiology, and therapy (1). N Engl J Med. 1987;316(13):780–9. https://doi.org/10.1056/nejm198703263161305. Epub 1987/03/26.

Article  CAS  PubMed  Google Scholar 

Frey N, Luedde M, Katus HA. Mechanisms of disease: hypertrophic cardiomyopathy. Nat Rev Cardiol. 2011;9(2):91–100. Epub 2011/10/27. https://doi.org/10.1038/nrcardio.2011.159. PubMed PMID: 22027658.

Abozguia K, Clarke K, Lee L, Frenneaux M. Modification of myocardial substrate use as a therapy for heart failure. Nat Clin Pract Cardiovasc Med. 2006;3(9):490–8. https://doi.org/10.1038/ncpcardio0583. Epub 2006/08/26.

Article  CAS  PubMed  Google Scholar 

von Bibra H, St John Sutton M. Impact of diabetes on postinfarction heart failure and left ventricular remodeling. Curr Heart Fail Rep. 2011;8(4):242–51. https://doi.org/10.1007/s11897-011-0070-8. Epub 2011/08/16.

Article  Google Scholar 

Jouven X, Charles MA, Desnos M, Ducimetière P. Circulating nonesterified fatty acid level as a predictive risk factor for sudden death in the population. Circulation. 2001;104(7):756–61. https://doi.org/10.1161/hc3201.094151. Epub 2001/08/15.

Article  CAS  PubMed  Google Scholar 

Cheng Y, Li W, McElfresh TA, Chen X, Berthiaume JM, Castel L, et al. Changes in myofilament proteins, but not Ca²+ regulation, are associated with a high-fat diet-induced improvement in contractile function in heart failure. Am J Physiol Heart Circ Physiol. 2011;301(4):H1438–46. PubMed PMID: 21765056; PubMed Central PMCID: PMCPMC3197361. Epub 2011/07/19.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Opie LH. The metabolic vicious cycle in heart failure. Lancet. 2004;364(9447):1733–4. Epub 2004/11/16. doi: 10.1016/s0140-6736(04)17412-6. PubMed PMID: 15541431.

Article  PubMed  Google Scholar 

Tuunanen H, Engblom E, Naum A, Någren K, Hesse B, Airaksinen KE, et al. Free fatty acid depletion acutely decreases cardiac work and efficiency in cardiomyopathic heart failure. Circulation. 2006;114(20):2130–7. https://doi.org/10.1161/circulationaha.106.645184. Epub 2006/11/08.

Article  CAS  PubMed  Google Scholar 

Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev. 2005;85(3):1093–129. https://doi.org/10.1152/physrev.00006.2004. Epub 2005/07/01.

Article  CAS  PubMed  Google Scholar 

Oliver MF. Sudden cardiac death: the lost fatty acid hypothesis. Qjm. 2006;99(10):701-9. Epub 2006/08/29. https://doi.org/10.1093/qjmed/hcl084. PubMed PMID: 16935924.

Johnson EJ, Dieter BP, Marsh SA. Evidence for distinct effects of exercise in different cardiac hypertrophic disorders. Life Sci. 2015;123:100–6. https://doi.org/10.1016/j.lfs.2015.01.007. Epub 2015/01/31.

Article  CAS  PubMed  Google Scholar 

Ritterhoff J, McMillen TS, Villet O, Young S, Kolwicz SC Jr., Senn T, et al. Increasing fatty acid oxidation elicits a sex-dependent response in failing mouse hearts. J Mol Cell Cardiol. 2021;158:1–10. https://doi.org/10.1016/j.yjmcc.2021.05.004. Epub 2021/05/15.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yvert T, He ZH, Santiago C, Hu Y, Li YC, Gómez-Gallego F et al. Acyl coenzyme A synthetase long-chain 1 (ACSL1) gene polymorphism (rs6552828) and elite endurance athletic status: a replication study. PLoS One. 2012;7(7):e41268. Epub 2012/07/26. https://doi.org/10.1371/journal.pone.0041268. PubMed PMID: 22829935; PubMed Central PMCID: PMCPMC3400600 Editorial Board members. This does not alter the authors’ adherence to all the PLoS ONE policies on sharing data and materials.

Petriz BA, Franco OL. Effects of hypertension and exercise on cardiac proteome remodelling. Biomed Res Int. 2014;2014:634132. Epub 2014/05/31. doi: 10.1155/2014/634132. PubMed PMID: 24877123; PubMed Central PMCID: PMCPMC4022191.

Article  PubMed  PubMed Central  Google Scholar 

ElSayed NA, Aleppo G, Aroda VR, Bannuru RR, Brown FM, Bruemmer D, et al. 2. Classification and diagnosis of diabetes: standards of Care in Diabetes-2023. Diabetes Care. 2023;46(Suppl 1):S19–40. https://doi.org/10.2337/dc23-S002. Epub 2022/12/13.

Article  CAS  PubMed  Google Scholar 

Ashrafian H, Redwood C, Blair E, Watkins H. Hypertrophic cardiomyopathy:a paradigm for myocardial energy depletion. Trends Genet. 2003;19(5):263–8. https://doi.org/10.1016/s0168-9525(03)00081-7. Epub 2003/04/25.

Article  CAS  PubMed  Google Scholar 

Doenst T, Nguyen TD, Abel ED. Cardiac metabolism in heart failure: implications beyond ATP production. Circ Res. 2013;113(6):709–24. https://doi.org/10.1161/circresaha.113.300376. Epub 2013/08/31.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Physiol Rev. 2010;90(1):207–58. https://doi.org/10.1152/physrev.00015.2009. Epub 2010/01/21.

Article  CAS  PubMed  Google Scholar 

Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963;1(7285):785–9. https://doi.org/10.1016/s0140-6736(63)91500-9. Epub 1963/04/13.

Article  CAS  PubMed  Google Scholar 

Lopaschuk GD, Spafford MA, Marsh DR. Glycolysis is predominant source of myocardial ATP production immediately after birth. Am J Physiol. 1991;261(6 Pt 2):H1698–705. https://doi.org/10.1152/ajpheart.1991.261.6.H1698. Epub 1991/12/01.

Article  CAS  PubMed  Google Scholar 

Lopaschuk GD, Jaswal JS. Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation. J Cardiovasc Pharmacol. 2010;56(2):130–40. https://doi.org/10.1097/FJC.0b013e3181e74a14. Epub 2010/05/28.

Article  CAS  PubMed  Google Scholar 

Allard MF, Schönekess BO, Henning SL, English DR, Lopaschuk GD. Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts. Am J Physiol. 1994;267(2 Pt 2):H742–50. https://doi.org/10.1152/ajpheart.1994.267.2.H742. Epub 1994/08/01.

Article  CAS  PubMed  Google Scholar 

Akki A, Smith K, Seymour AM. Compensated cardiac hypertrophy is characterised by a decline in palmitate oxidation. Mol Cell Biochem. 2008;311(1–2):215 – 24. Epub 2008/02/19. https://doi.org/10.1007/s11010-008-9711-y. PubMed PMID: 18278440.

Sen S, Kundu BK, Wu HC, Hashmi SS, Guthrie P, Locke LW, et al. Glucose regulation of load-induced mTOR signaling and ER stress in mammalian heart. J Am Heart Assoc. 2013;2(3):e004796. https://doi.org/10.1161/jaha.113.004796. Epub 2013/05/21.

Article  PubMed  PubMed Central  Google Scholar 

Schwartz GG, Greyson C, Wisneski JA, Garcia J. Inhibition of fatty acid metabolism alters myocardial high-energy phosphates in vivo. Am J Physiol. 1994;267(1 Pt 2):H224–31. https://doi.org/10.1152/ajpheart.1994.267.1.H224. Epub 1994/07/01.

Article  CAS  PubMed  Google Scholar 

Crilley JG, Boehm EA, Blair E, Rajagopalan B, Blamire AM, Styles P, et al. Hypertrophic cardiomyopathy due to sarcomeric gene mutations is characterized by impaired energy metabolism irrespective of the degree of hypertrophy. J Am Coll Cardiol. 2003;41(10):1776–82. https://doi.org/10.1016/s0735-1097(02)03009-7. Epub 2003/05/28.

Article  CAS  PubMed  Google Scholar 

Javadpour MM, Tardiff JC, Pinz I, Ingwall JS. Decreased energetics in murine hearts bearing the R92Q mutation in cardiac troponin T. J Clin Invest. 2003;112(5):768–75. https://doi.org/10.1172/jci15967. Epub 2003/09/04.

Article 

留言 (0)

沒有登入
gif