Cryo-EM structures of Smc5/6 in multiple states reveal its assembly and functional mechanisms

Uhlmann, F. SMC complexes: from DNA to chromosomes. Nat. Rev. Mol. Cell Biol. 17, 399–412 (2016).

Article  CAS  PubMed  Google Scholar 

Burmann, F. & Lowe, J. Structural biology of SMC complexes across the tree of life. Curr. Opin. Struct. Biol. 80, 102598 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davidson, I. F. & Peters, J. M. Genome folding through loop extrusion by SMC complexes. Nat. Rev. Mol. Cell. Biol. 22, 445–464 (2021).

Article  CAS  PubMed  Google Scholar 

Peng, X. & Zhao, X. The multi-functional Smc5/6 complex in genome protection and disease. Nat. Struct. Mol. Biol. 30, 724–734 (2023).

Article  CAS  PubMed  Google Scholar 

Zhao, X. & Blobel, G. A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc. Natl Acad. Sci. USA 102, 4777–4782 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Andrews, E. A. et al. Nse2, a component of the Smc5-6 complex, is a SUMO ligase required for the response to DNA damage. Mol. Cell. Biol. 25, 185–196 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Potts, P. R. & Yu, H. Human MMS21/NSE2 is a SUMO ligase required for DNA repair. Mol. Cell. Biol. 25, 7021–7032 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vondrova, L. et al. A role of the Nse4 kleisin and Nse1/Nse3 KITE subunits in the ATPase cycle of SMC5/6. Sci. Rep. 10, 9694 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hallett, S. T. et al. Nse5/6 is a negative regulator of the ATPase activity of the Smc5/6 complex. Nucleic Acids Res. 49, 4534–4549 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Taschner, M. et al. Nse5/6 inhibits the Smc5/6 ATPase to facilitate DNA substrate selection. EMBO J. 40, e107807 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chang, J. T. et al. Smc5/6’s multifaceted DNA binding capacities stabilize branched DNA structures. Nat. Commun. 13, 7179 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jo, A., Li, S., Shin, J. W., Zhao, X. & Cho, Y. Structure basis for shaping the Nse4 protein by the Nse1 and Nse3 dimer within the Smc5/6 complex. J. Mol. Biol. 433, 166910 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu, Y. et al. Integrative analysis reveals unique structural and functional features of the Smc5/6 complex. Proc. Natl Acad. Sci. USA 118, e2026844118 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu, Y. et al. Cryo-EM structure of DNA-bound Smc5/6 reveals DNA clamping enabled by multi-subunit conformational changes. Proc. Natl Acad. Sci. USA 119, e2202799119 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hallett, S. T. et al. Cryo-EM structure of the Smc5/6 holo-complex. Nucleic Acids Res. 50, 9505–9520 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bürmann, F. et al. A folded conformation of MukBEF and cohesin. Nat. Struct. Mol. Biol. 26, 227–236 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Shi, Z., Gao, H., Bai, X.-C. & Yu, H. Cryo-EM structure of the human cohesin-NIPBL-DNA complex. Science 368, 1454–1459 (2020).

Article  CAS  PubMed  Google Scholar 

Lee, B.-G. et al. Cryo-EM structures of holo condensin reveal a subunit flip-flop mechanism. Nat. Struct. Mol. Biol. 27, 743–751 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Serrano, D. et al. The Smc5/6 core complex is a structure-specific DNA binding and compacting machine. Mol. Cell 80, 1025–1038 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alt, A. et al. Specialized interfaces of Smc5/6 control hinge stability and DNA association. Nat. Commun. 8, 14011 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duan, X. et al. Structural and functional insights into the roles of the Mms21 subunit of the Smc5/6 complex. Mol. Cell 35, 657–668 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Petela, N. J. et al. Folding of cohesin’s coiled coil is important for Scc2/4-induced association with chromosomes. eLife 10, e67268 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Menolfi, D., Delamarre, A., Lengronne, A., Pasero, P. & Branzei, D. Essential roles of the Smc5/6 complex in replication through natural pausing sites and endogenous DNA damage tolerance. Mol. Cell 60, 835–846 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pebernard, S., Wohlschlegel, J., McDonald, W. H., Yates, J. R. 3rd & Boddy, M. N. The Nse5-Nse6 dimer mediates DNA repair roles of the Smc5-Smc6 complex. Mol. Cell. Biol. 26, 1617–1630 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Raschle, M. et al. DNA repair. Proteomics reveals dynamic assembly of repair complexes during bypass of DNA cross-links. Science 348, 1253671 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Pradhan, B. et al. The Smc5/6 complex is a DNA loop-extruding motor. Nature 616, 843–848 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Taschner, M. & Gruber, S. DNA segment capture by Smc5/6 holocomplexes. Nat. Struct. Mol. Biol. 30, 619–628 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Adamus, M. et al. Molecular insights into the architecture of the human SMC5/6 complex. J. Mol. Biol. 432, 3820–3837 (2020).

Article  CAS  PubMed  Google Scholar 

Oravcova, M. et al. The Nse5/6-like SIMC1-SLF2 complex localizes SMC5/6 to viral replication centers. eLife 11, e79676 (2022).

Article  CAS 

留言 (0)

沒有登入
gif