Sex hormone binding globulin (SHBG) modulates mitochondrial dynamics in PPARγ-depleted equine adipose derived stromal cells

Manna P, Jain SK (2015) Obesity, oxidative stress, adipose tissue dysfunction, and the associated health risks: causes and therapeutic strategies. Metab Syndr Relat Disord 13:423–444. https://doi.org/10.1089/met.2015.0095

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rochlani Y, Pothineni NV, Kovelamudi S, Mehta JL (2017) Metabolic syndrome: pathophysiology, management, and modulation by natural compounds. Ther Adv Cardiovasc Dis 11:215–225. https://doi.org/10.1177/1753944717711379

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu P, Yuan R, Yang X, Qi Z (2019) Adipose tissue, aging, and metabolism. Current Opinion in Endocrine and Metabolic Research 5:11–20. https://doi.org/10.1016/j.coemr.2019.02.003

Article  Google Scholar 

Luo L, Liu M (2016) Adipose tissue in control of metabolism. J Endocrinol 231:R77–R99. https://doi.org/10.1530/JOE-16-0211

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun C, Mao S, Chen S, Zhang W, Liu C (2021) PPARs-orchestrated metabolic homeostasis in the adipose tissue. IJMS 22:8974. https://doi.org/10.3390/ijms22168974

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lefterova MI, Haakonsson AK, Lazar MA, Mandrup S (2014) PPARγ and the global map of adipogenesis and beyond. Trends Endocrinol Metab 25:293–302. https://doi.org/10.1016/j.tem.2014.04.001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barroso I, Gurnell M, Crowley VEF, Agostini M, Schwabe JW, Soos MA, Maslen GL, Williams TDM, Lewis H, Schafer AJ et al (1999) Dominant negative mutations in human PPARγ associated with severe insulin resistance, diabetes mellitus and hypertension. Nature 402:880–883. https://doi.org/10.1038/47254

Article  CAS  PubMed  Google Scholar 

Miles PDG, Barak Y, He W, Evans RM, Olefsky JM (2000) Improved insulin-sensitivity in mice heterozygous for PPAR-γ deficiency. J Clin Invest 105:287–292. https://doi.org/10.1172/JCI8538

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jones JR, Barrick C, Kim K-A, Lindner J, Blondeau B, Fujimoto Y, Shiota M, Kesterson RA, Kahn BB, Magnuson MA (2005) Deletion of PPARγ in adipose tissues of mice protects against high fat diet-induced obesity and insulin resistance. Proc Natl Acad Sci USA 102:6207–6212. https://doi.org/10.1073/pnas.0306743102

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kubota N, Terauchi Y, Miki H, Tamemoto H, Yamauchi T, Komeda K, Satoh S, Nakano R, Ishii C, Sugiyama T et al (1999) PPARγ mediates high-fat diet–induced adipocyte hypertrophy and insulin resistance. Mol Cell 4:597–609. https://doi.org/10.1016/S1097-2765(00)80210-5

Article  CAS  PubMed  Google Scholar 

Corona JC, Duchen MR (2016) PPARγ as a therapeutic target to rescue mitochondrial function in neurological disease. Free Radical Biol Med 100:153–163. https://doi.org/10.1016/j.freeradbiomed.2016.06.023

Article  CAS  Google Scholar 

Chang JS, Ha K (2018) A Truncated PPAR gamma 2 localizes to mitochondria and regulates mitochondrial respiration in brown adipocytes. PLoS ONE 13:e0195007. https://doi.org/10.1371/journal.pone.0195007

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bournat JC, Brown CW (2010) Mitochondrial dysfunction in obesity: Current Opinion in Endocrinology. Diabetes and Obesity 17:446–452. https://doi.org/10.1097/MED.0b013e32833c3026

Article  CAS  Google Scholar 

Frangos SM, Bishop DJ, Holloway GP (2021) Revisiting the contribution of mitochondrial biology to the pathophysiology of skeletal muscle insulin resistance. Biochemical Journal 478:3809–3826. https://doi.org/10.1042/BCJ20210145

Article  CAS  PubMed  Google Scholar 

Sangwung P, Petersen KF, Shulman GI, Knowles JW (2020) Mitochondrial dysfunction, insulin resistance, and potential genetic implications. Endocrinology 161:bqaa017. https://doi.org/10.1210/endocr/bqaa017

Article  CAS  PubMed  PubMed Central  Google Scholar 

Masenga SK, Kabwe LS, Chakulya M, Kirabo A (2023) Mechanisms of oxidative stress in metabolic syndrome. IJMS 24:7898. https://doi.org/10.3390/ijms24097898

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang C, Wang C, Huang H, Wei Y (2013) Mitochondrial dysfunction leads to impairment of insulin sensitivity and adiponectin secretion in adipocytes. FEBS J 280:1039–1050. https://doi.org/10.1111/febs.12096

Article  CAS  PubMed  Google Scholar 

Basualto-Alarcón C, Llanos P, García-Rivas G, Troncoso MF, Lagos D, Barrientos G, Estrada M (2021) Classic and novel sex hormone binding globulin effects on the cardiovascular system in men. International Journal of Endocrinology 2021:1–13. https://doi.org/10.1155/2021/5527973

Article  Google Scholar 

Aroda VR, Christophi CA, Edelstein SL, Perreault L, Kim C, Golden SH, Horton E, Mather KJ (2020) Circulating sex hormone binding globulin levels are modified with intensive lifestyle intervention, but their changes did not independently predict diabetes risk in the diabetes prevention program. BMJ Open Diab Res Care 8:e001841. https://doi.org/10.1136/bmjdrc-2020-001841

Article  PubMed  PubMed Central  Google Scholar 

Bourebaba N, Ngo T, Śmieszek A, Bourebaba L, Marycz K (2022) Sex hormone binding globulin as a potential drug candidate for liver-related metabolic disorders treatment. Biomed Pharmacother 153:113261. https://doi.org/10.1016/j.biopha.2022.113261

Article  CAS  PubMed  Google Scholar 

Yoo S-Z, No M-H, Heo J-W, Park D-H, Kang J-H, Kim J-H, Seo D-Y, Han J, Jung S-J, Kwak H-B (2019) Effects of acute exercise on mitochondrial function, dynamics, and mitophagy in rat cardiac and skeletal muscles. Int Neurourol J 23:S22-31. https://doi.org/10.5213/inj.1938038.019

Article  PubMed  PubMed Central  Google Scholar 

Kong Y, Liu P, Li Y, Nolan ND, Quinn PMJ, Hsu C, Jenny LA, Zhao J, Cui X, Chang Y et al (2023) HIF2α Activation and mitochondrial deficit due to iron chelation cause retinal atrophy. EMBO Mol Med 15:e16525. https://doi.org/10.15252/emmm.202216525

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yokoyama Y, Sakamoto A, Mizunuma H (2005) 10 Role of immunohistochemical expression of cyclooxygenase and peroxisome proliferator-activated receptor γ in epithelial ovarian tumors. In Handbook of Immunohistochemistry and in Situ Hybridization of Human Carcinomas. Elsevier. 4:387–391 ISBN 978–0–12–369402–7

Tyagi S, Sharma S, Gupta P, Saini A, Kaushal C (2011) The peroxisome proliferator-activated receptor: a family of nuclear receptors role in various diseases. J Adv Pharm Tech Res 2:236. https://doi.org/10.4103/2231-4040.90879

Article  CAS  Google Scholar 

Yu W-H, Li F-G, Chen X-Y, Li J-T, Wu Y-H, Huang L-H, Wang Z, Li P, Wang T, Lahn BT et al (2012) PPARγ suppression inhibits adipogenesis but does not promote osteogenesis of human mesenchymal stem cells. Int J Biochem Cell Biol 44:377–384. https://doi.org/10.1016/j.biocel.2011.11.013

Article  CAS  PubMed  Google Scholar 

Simons PIHG, Valkenburg O, Telgenkamp I, Van Der Waaij KM, De Groot DM, Veeraiah P, Bons JAP, Taskinen M, Borén J, Schrauwen P et al (2021) Relationship between de novo lipogenesis and serum sex hormone binding globulin in humans. Clin Endocrinol 95:101–106. https://doi.org/10.1111/cen.14459

Article  CAS  Google Scholar 

Wallace IR, McKinley MC, Bell PM, Hunter SJ (2013) Sex hormone binding globulin and insulin resistance. Clin Endocrinol 78:321–329. https://doi.org/10.1111/cen.12086

Article  CAS  Google Scholar 

Marycz K, Kornicka K, Basinska K, Czyrek A (2016) Equine metabolic syndrome affects viability, senescence, and stress factors of equine adipose-derived mesenchymal stromal stem cells: new insight into EqASCs isolated from EMS horses in the context of their aging. Oxid Med Cell Longev 2016:1–17. https://doi.org/10.1155/2016/4710326

Article 

留言 (0)

沒有登入
gif