The role and mechanism of heme oxygenase-1 in arrhythmias

Zhang X, Gao Y, Zhou Y, Liu Z, Liu R (2023) Pharmacological mechanism of natural drugs and their active ingredients in the treatment of arrhythmia via calcium channel regulation. Biomed Pharmacother 160:114413. https://doi.org/10.1016/j.biopha.2023.114413

Article  CAS  PubMed  Google Scholar 

Kim JY, Choi EK, Lim HE, Oh YS, Cho Y, On YK (2022) Outcomes of on-label reduced-dose edoxaban in patients with atrial fibrillation: the LEDIOS registry. J Korean Med Sci 37(48):e335. https://doi.org/10.3346/jkms.2022.37.e335

Article  PubMed  PubMed Central  Google Scholar 

Tavazzi G, Dammassa V, Colombo CNJ, Arbustini E, Castelein T, Balik M, Vandenbriele C (2022) Mechanical circulatory support in ventricular arrhythmias. Front Cardiovasc Med 9:987008. https://doi.org/10.3389/fcvm.2022.987008

Article  PubMed  PubMed Central  Google Scholar 

Dunaway LS, Loeb SA, Petrillo S, Tolosano E, Isakson BE (2024) Heme metabolism in nonerythroid cells. J Biol Chem 300(4):107132. https://doi.org/10.1016/j.jbc.2024.107132

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen X, Wan W, Ran Q, Ye T, Sun Y, Liu Z, Liu X, Shi S, Qu C, Zhang C et al (2022) Pinocembrin mediates antiarrhythmic effects in rats with isoproterenol-induced cardiac remodeling. Eur J Pharmacol 920:174799. https://doi.org/10.1016/j.ejphar.2022.174799

Article  CAS  PubMed  Google Scholar 

Fang Z, Liu Z, Tao B, Jiang X (2023) Engeletin mediates antiarrhythmic effects in mice with isoproterenol-induced cardiac remodeling. Biomed Pharmacother 161:114439. https://doi.org/10.1016/j.biopha.2023.114439

Article  CAS  PubMed  Google Scholar 

Dunn LL, Midwinter RG, Ni J, Hamid HA, Parish CR, Stocker R (2014) New insights into intracellular locations and functions of heme oxygenase-1. Antioxid Redox Signal 20(11):1723–1742. https://doi.org/10.1089/ars.2013.5675

Article  CAS  PubMed  PubMed Central  Google Scholar 

Diepeveen LE, Stegemann G, Wiegerinck ET, Roelofs R, Naber M, Lóreal O, Smeets B, Thévenod F, Swinkels DW, van Swelm RPL (2022) Investigating the molecular mechanisms of renal hepcidin induction and protection upon hemoglobin-induced acute kidney injury. Int J Mol Sci 23(3):1352. https://doi.org/10.3390/ijms23031352

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang X, Tripathi R, Wang M, Lu W, Anifowose A, Tan C, Wang B (2023) Toward “CO in a Pill”: silica-immobilized organic CO prodrugs for studying the feasibility of systemic delivery of CO via gastrointestinal CO release. Mol Pharm 20(3):1850–1856. https://doi.org/10.1021/acs.molpharmaceut.2c01104

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yuan Z, De La Cruz LK, Yang X, Wang B (2022) Carbon monoxide signaling: examining its engagement with various molecular targets in the context of binding affinity, concentration, and biologic response. Pharmacol Rev 74:823–873. https://doi.org/10.1124/pharmrev.121.000564

Article  CAS  PubMed  Google Scholar 

Vítek L (2020) Bilirubin as a signaling molecule. Med Res Rev 40(4):1335–1351. https://doi.org/10.1002/med.21660

Article  CAS  PubMed  Google Scholar 

Hinds TD, Stec DE (2019) Bilirubin safeguards cardiorenal and metabolic diseases: a protective role in health. Curr Hypertens Rep 21(11):87. https://doi.org/10.1007/s11906-019-0994-z

Article  PubMed  PubMed Central  Google Scholar 

Puentes-Pardo JD, Moreno-SanJuan S, Carazo Á, León J (2020) Heme oxygenase-1 in gastrointestinal tract health and disease. Antioxidants (Basel) 9(12):1214. https://doi.org/10.3390/antiox9121214

Article  CAS  PubMed  Google Scholar 

Arosio P, Levi S (2010) Cytosolic and mitochondrial ferritins in the regulation of cellular iron homeostasis and oxidative damage. Biochim Biophys Acta 1800(8):783–792. https://doi.org/10.1016/j.bbagen.2010.02.005

Article  CAS  PubMed  Google Scholar 

Wagner M, Sadek MS, Dybkova N, Mason FE, Klehr J, Firneburg R, Cachorro E, Richter K, Klapproth E, Kuenzel SR et al (2021) Cellular mechanisms of the anti-arrhythmic effect of cardiac PDE2 overexpression. Int J Mol Sci 22(9):4816. https://doi.org/10.3390/ijms22094816

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ran Q, Zhang C, Wan W, Ye T, Zou Y, Liu Z, Yu Y, Zhang J, Shen B, Yang B (2022) Pinocembrin ameliorates atrial fibrillation susceptibility in rats with anxiety disorder induced by empty bottle stimulation. Front Pharmacol 13:1004888. https://doi.org/10.3389/fphar.2022.1004888

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yeh YH, Hsu LA, Chen YH, Kuo CT, Chang GJ, Chen WJ (2016) Protective role of heme oxygenase-1 in atrial remodeling. Basic Res Cardiol 111(5):58. https://doi.org/10.1007/s00395-016-0577-y

Article  CAS  PubMed  Google Scholar 

Yeh YH, Kuo CT, Chang GJ, Chen YH, Lai YJ, Cheng ML, Chen WJ (2015) Rosuvastatin suppresses atrial tachycardia-induced cellular remodeling via Akt/Nrf2/heme oxygenase-1 pathway. J Mol Cell Cardiol 82:84–92. https://doi.org/10.1016/j.yjmcc.2015.03.004

Article  CAS  PubMed  Google Scholar 

Lakkisto P, Csonka C, Fodor G, Bencsik P, Voipio-Pulkki LM, Ferdinandy P, Pulkki K (2009) The heme oxygenase inducer hemin protects against cardiac dysfunction and ventricular fibrillation in ischaemic/reperfused rat hearts: role of connexin 43. Scand J Clin Lab Invest 69(2):209–218. https://doi.org/10.1080/00365510802474392

Article  CAS  PubMed  Google Scholar 

He B, Li W, Zhang X, Wu Y, Liu J, Brewer LM, Yu L (2020) The analysis of how apnea influences the autonomic nervous system using short-term heart rate variability indices. J Healthc Eng 2020:6503715. https://doi.org/10.1155/2020/6503715

Article  PubMed  PubMed Central  Google Scholar 

Lee TM, Lin SZ, Chang NC (2014) Antiarrhythmic effect of lithium in rats after myocardial infarction by activation of Nrf2/HO-1 signaling. Free Radic Biol Med 77:71–81. https://doi.org/10.1016/j.freeradbiomed.2014.08.022

Article  CAS  PubMed  Google Scholar 

Lee TM, Chen WT, Chang NC (2015) Dipeptidyl peptidase-4 inhibition attenuates arrhythmias via a protein kinase A-dependent pathway in infarcted hearts. Circ J 79(11):2461–2470. https://doi.org/10.1253/circj.CJ-15-0515

Article  CAS  PubMed  Google Scholar 

Ryter SW (2020) Therapeutic potential of heme oxygenase-1 and carbon monoxide in acute organ injury, critical illness, and inflammatory disorders. Antioxidants (Basel) 9(11):1153. https://doi.org/10.3390/antiox9111153

Article  CAS  PubMed  Google Scholar 

Dugbartey GJ, Alornyo KK, Luke PPW, Sener A (2021) Application of carbon monoxide in kidney and heart transplantation: a novel pharmacological strategy for a broader use of suboptimal renal and cardiac grafts. Pharmacol Res 173:105883. https://doi.org/10.1016/j.phrs.2021.105883

Article  CAS  PubMed  Google Scholar 

Bak I, Papp G, Turoczi T, Varga E, Szendrei L, Vecsernyes M, Joo F, Tosaki A (2002) The role of heme oxygenase-related carbon monoxide and ventricular fibrillation in ischemic/reperfused hearts. Free Radic Biol Med 33(5):639–648. https://doi.org/10.1016/s0891-5849(02)00913-9

Article  CAS  PubMed  Google Scholar 

Bak I, Szendrei L, Turoczi T, Papp G, Joo F, Das DK, de Leiris J, Der P, Juhasz B, Varga E et al (2003) Heme oxygenase-1-related carbon monoxide production and ventricular fibrillation in isolated ischemic/reperfused mouse myocardium. FASEB J 17(14):2133–2135. https://doi.org/10.1096/fj.03-0032fje

Article  CAS  PubMed 

留言 (0)

沒有登入
gif