Inhibition and reversal of a TGF-β1 induced myofibroblast phenotype by adipose tissue-derived paracrine factors

Marshall CD, Hu MS, Leavitt T, Barnes LA, Lorenz HP, Longaker MT. Cutaneous scarring: basic science, current treatments, and future directions. Adv Wound Care (New Rochelle). 2018;7(2):29–45.

Article  PubMed  Google Scholar 

Van Baar ME, Essink-Bot ML, Oen IMMH, Dokter J, Boxma H, Van Beeck EF. Functional outcome after burns: a review. Burns. 2006;32(1):1–9.

Article  PubMed  Google Scholar 

Hoogewerf CJ, van Baar ME, Middelkoop E, van Loey NE. Impact of facial burns: relationship between depressive symptoms, self-esteem and scar severity. Gen Hosp Psychiatry. 2014;36(3):271–6.

Article  PubMed  Google Scholar 

Leventhal D, Furr M, Reiter D. Treatment of keloids and hypertrophic scars: a meta-analysis and review of the literature. Arch Facial Plast Surg. 2006;8(6):362–8.

Article  PubMed  Google Scholar 

Shockley WW. Scar revision techniques: Z-plasty, W-plasty, and geometric broken line closure. Facial Plast Surg Clin N Am. 2011;19(3):455–63.

Article  Google Scholar 

Klinger M, Marazzi M, Vigo D, Torre M. Fat injection for cases of severe burn outcomes: a new perspective of scar remodeling and reduction. Aesthet Plast Surg. 2008;32(3):465–9.

Article  CAS  Google Scholar 

Rigotti G, Marchi A, Galiè M, Baroni G, Benati D, Krampera M, Pasini A, Sbarbati A. Clinical treatment of radiotherapy tissue damage by lipoaspirate transplant: a healing process mediated by adipose-derived adult stem cells. Plast Reconstr Surg. 2007;119(5):1409–22.

Article  CAS  PubMed  Google Scholar 

Eto H, Suga H, Matsumoto D, Inoue K, Aoi N, Kato H, Araki J, Yoshimura K. Characterization of structure and cellular components of aspirated and excised adipose tissue. Plast Reconstr Surg. 2009;124(4):1087–97.

Article  CAS  PubMed  Google Scholar 

Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211–28.

Article  CAS  PubMed  Google Scholar 

Spiekman M, van Dongen JA, Willemsen JC, Hoppe DL, van der Lei B, Harmsen MC. The power of fat and its adipose-derived stromal cells: emerging concepts for fibrotic scar treatment. J Tissue Eng Regen Med. 2017;11(11):3220–35.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tonnard P, Verpaele A, Peeters G, Hamdi M, Cornelissen M, Declercq H. Nanofat grafting: basic research and clinical applications. Plast Reconstr Surg. 2013;132(4):1017–26.

Article  CAS  PubMed  Google Scholar 

van Dongen JA, Getova V, Brouwer LA, Liguori GR, Sharma PK, Stevens HP, van der Lei B, Harmsen MC. Adipose tissue-derived extracellular matrix hydrogels as a release platform for secreted paracrine factors. J Tissue Eng Regen Med. 2019;13(6):973–85.

Article  PubMed  PubMed Central  Google Scholar 

Hoerst K, van den Broek L, Sachse C, Klein O, von Fritschen U, Gibbs S, Hedtrich S. Regenerative potential of adipocytes in hypertrophic scars is mediated by myofibroblast reprogramming. J Mol Med. 2019;97(6):761–75.

Article  CAS  PubMed  Google Scholar 

Kruger MJ, Conradie MM, Conradie M, Van De Vyver M. ADSC-conditioned media elicit an ex vivo anti-inflammatory macrophage response. J Mol Endocrinol. 2018;61(4):173–84.

Article  CAS  PubMed  Google Scholar 

Mou S, Zhou M, Li Y, Wang J, Yuan Q, Xiao P, Sun J, Wang Z. Extracellular vesicles from human adipose-derived stem cells for the improvement of angiogenesis and fat-grafting application. Plast Reconstr Surg. 2019;144(4):869–80.

Article  CAS  PubMed  Google Scholar 

Spiekman M, Przybyt E, Plantinga JA, Gibbs S, van der Berend L, Harmsen MC. Adipose tissue–derived stromal cells inhibit TGF-β1–induced differentiation of human dermal fibroblasts and keloid scar–derived fibroblasts in a paracrine fashion. Plast Reconstr Surg. 2014;134(4):699–712.

Article  CAS  PubMed  Google Scholar 

Mazini L, Ezzoubi M, Malka G. Overview of current adipose-derived stem cell (ADSCs) processing involved in therapeutic advancements: flow chart and regulation updates before and after COVID-19. Stem Cell Res Ther. 2021;12(1):1–17.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Desmouliére A, Geinoz A, Gabbiani F, Gabbiani G. Transforming growth factor-β1 induces α-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol. 1993;122(1):103–11.

Article  PubMed  Google Scholar 

Darby IA, Zakuan N, Billet F, Desmoulière A. The myofibroblast, a key cell in normal and pathological tissue repair. Cell Mol Life Sci. 2016;73(6):1145–57.

Article  CAS  PubMed  Google Scholar 

Desmouléire A, Redard M, Darby I, Gabbiani G. Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am J Pathol. 1995;146(1):56–66.

Google Scholar 

Aarabi S, Bhatt KA, Shi Y, Paterno J, Chang EI, Loh SA, Holmes JW, Longaker MT, Yee H, Gurtner GC. Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis. FASEB J. 2007;21(12):3250–61.

Article  CAS  PubMed  Google Scholar 

Howard EW, Crider BJ, Updike DL, Bullen EC, Parks EE, Haaksma CJ, Sherry DM, Tomasek JJ. MMP-2 expression by fibroblasts is suppressed by the myofibroblast phenotype. Exp Cell Res. 2012;318(13):1542–53.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Petrov VV, Fagard RH, Lijnen PJ. Stimulation of collagen production by transforming growth factor-β1 during differentiation of cardiac fibroblasts to myofibroblasts. Hypertension. 2002;39(2):258–63.

Article  CAS  PubMed  Google Scholar 

Neves LMG, Wilgus TA, Bayat A. In vitro, ex vivo, and in vivo approaches for investigation of skin scarring: human and animal models. Adv Wound Care (New Rochelle). 2023;12(2):97–116.

Article  PubMed  Google Scholar 

Tai Y, Woods EL, Dally J, Kong D, Steadman R, Moseley R, Midgley AC. Myofibroblasts: function, formation, and scope of molecular therapies for skin fibrosis. Biomolecules. 2021;11(8):1–27.

Article  Google Scholar 

Bullock AJ, Higham MC, MacNeil S. Use of human fibroblasts in the development of a xenobiotic-free culture and delivery system for human keratinocytes. Tissue Eng. 2006;12(2):245–55.

Article  CAS  PubMed  Google Scholar 

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402–8.

Article  CAS  PubMed  Google Scholar 

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82.

Article  CAS  PubMed  Google Scholar 

Higginbotham S. Fat, fibroblasts, and fibrosis; how deposits of adipose tissue ameliorate dermal scarring. The University of Sheffield; 2022.

Yang J, Dai C, Liu Y. Hepatocyte growth factor suppresses renal interstitial myofibroblast activation and intercepts Smad signal transduction. Am J Pathol. 2003;163(2):621–32.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sohn SH, Kim B, Sul HJ, Choi BY, Kim HS, Zang DY. Foretinib inhibits cancer stemness and gastric cancer cell proliferation by decreasing CD44 and c-MET signalling. Onco Targets Ther. 2020;13:1027–35.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ejaz A, Epperly MW, Hou W, Greenberger JS, Rubin JP. Adipose-derived stem cell therapy ameliorates ionizing irradiation fibrosis via hepatocyte growth factor-mediated transforming growth factor-β downregulation and recruitment of bone marrow cells. Stem Cells. 2019;37(6):791–802.

留言 (0)

沒有登入
gif