Effects of Kv1.3 knockout on pyramidal neuron excitability and synaptic plasticity in piriform cortex of mice

Kim DM, Nimigean CM. Voltage-gated potassium channels: a structural examination of selectivity and gating. Cold Spring Harb Perspect Biol. 2016;8:a029231.

Article  PubMed  PubMed Central  Google Scholar 

Veh RW, Lichtinghagen R, Sewing S, Wunder F, Grumbach IM, Pongs O. Immunohistochemical localization of five members of the Kv1 channel subunits: contrasting subcellular locations and neuron-specific co-localizations in rat brain. Eur J Neurosci. 1995;7:2189–205.

Article  CAS  PubMed  Google Scholar 

Zhao W, Chen Y. Progress in research of KV1.1 and KV1.3 channels as therapeutic targets. Curr Top Med Chem. 2016;16:1877–85.

Article  CAS  PubMed  Google Scholar 

Guan D, Lee JC, Tkatch T, Surmeier DJ, Armstrong WE, Foehring RC. Expression and biophysical properties of Kv1 channels in supragranular neocortical pyramidal neurones. J Physiol. 2006;571:371–89.

Article  CAS  PubMed  Google Scholar 

He S, Shao LR, Rittase WB, Bausch SB. Increased Kv1 channel expression may contribute to decreased sIPSC frequency following chronic inhibition of NR2B-containing NMDAR. Neuropsychopharmacology. 2012;37:1338–56.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duque A, Gazula VR, Kaczmarek LK. Expression of Kv1.3 potassium channels regulates density of cortical interneurons. Dev Neurobiol. 2013;73:841–55.

Article  CAS  PubMed  Google Scholar 

Rivera JF, Chu PJ, Arnold DB. The T1 domain of Kv1.3 mediates intracellular targeting to axons. Eur J Neurosci. 2005;22:1853–62.

Article  PubMed  Google Scholar 

Meneses D, Vega AV, Torres-Cruz FM, Barral J. KV1 and KV3 potassium channels identified at presynaptic terminals of the corticostriatal synapses in rat. Neural Plast. 2016;2016:8782518.

Article  PubMed  PubMed Central  Google Scholar 

Marks DR, Tucker K, Cavallin MA, Mast TG, Fadool DA. Awake intranasal insulin delivery modifies protein complexes and alters memory, anxiety, and olfactory behaviors. J Neurosci. 2009;29:6734–51.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kolling LJ, Tatti R, Lowry T, Loeven AM, Fadool JM, Fadool DA. Modulating the excitability of olfactory output neurons affects whole-body metabolism. J Neurosci. 2022;42:5966–90.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fadool DA, Tucker K, Perkins R, Fasciani G, Thompson RN, Parsons AD, et al. Kv1.3 channel gene-targeted deletion produces “Super-Smeller Mice” with altered glomeruli, interacting scaffolding proteins, and biophysics. Neuron. 2004;41:389–404.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tucker K, Cho S, Thiebaud N, Henderson MX, Fadool DA. Glucose sensitivity of mouse olfactory bulb neurons is conveyed by a voltage-gated potassium channel. J Physiol. 2013;591:2541–61.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thiebaud N, Johnson MC, Butler JL, Bell GA, Ferguson KL, Fadool AR, et al. Hyperlipidemic diet causes loss of olfactory sensory neurons, reduces olfactory discrimination, and disrupts odor-reversal learning. J Neurosci. 2014;34:6970–84.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guthoff M, Tschritter O, Berg D, Liepelt I, Schulte C, Machicao F, et al. Effect of genetic variation in Kv1.3 on olfactory function. Diabetes Metab Res Rev. 2009;25:523–7.

Article  CAS  PubMed  Google Scholar 

Stettler DD, Axel R. Representations of odor in the piriform cortex. Neuron. 2009;63:854–64.

Article  CAS  PubMed  Google Scholar 

Terral G, Busquets-Garcia A, Varilh M, Achicallende S, Cannich A, Bellocchio L, et al. CB1 receptors in the anterior piriform cortex control odor preference memory. Curr Biol. 2019;29:2455–64. e5.

Article  CAS  PubMed  Google Scholar 

Tucker K, Overton JM, Fadool DA. Kv1.3 gene-targeted deletion alters longevity and reduces adiposity by increasing locomotion and metabolism in melanocortin-4 receptor-null mice. Int J Obes. 2008;32:1222–32.

Article  CAS  Google Scholar 

Schwartz AB, Kapur A, Huang Z, Anangi R, Spear JM, Stagg S, et al. Olfactory bulb-targeted quantum dot (QD) bioconjugate and Kv1.3 blocking peptide improve metabolic health in obese male mice. J Neurochem. 2021;157:1876–96.

Article  CAS  PubMed  Google Scholar 

Han S, Yi H, Yin SJ, Chen ZY, Liu H, Cao ZJ, et al. Structural basis of a potent peptide inhibitor designed for Kv1.3 channel, a therapeutic target of autoimmune disease. J Biol Chem. 2008;283:19058–65.

Article  CAS  PubMed  Google Scholar 

Sarkar S, Nguyen HM, Malovic E, Luo J, Langley M, Palanisamy BN, et al. Kv1.3 modulates neuroinflammation and neurodegeneration in Parkinson’s disease. J Clin Invest. 2020;130:4195–212.

CAS  PubMed  PubMed Central  Google Scholar 

Ramesha S, Rayaprolu S, Bowen CA, Giver CR, Bitarafan S, Nguyen HM, et al. Unique molecular characteristics and microglial origin of Kv1.3 channel-positive brain myeloid cells in Alzheimer’s disease. Proc Natl Acad Sci USA. 2021;118:e2013545118.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee RD, Chen YJ, Singh L, Nguyen HM, Wulff H. Immunocytoprotection after reperfusion with Kv1.3 inhibitors has an extended treatment window for ischemic stroke. Front Pharmacol. 2023;14:1190476.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schilardi G, Kralik J, Kleinlogel S. Selective block of upregulated Kv1.3 potassium channels in on-bipolar cells of the blind retina enhances optogenetically restored signaling. Int J Mol Sci. 2023;24:14207.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Glickfeld LL, Scanziani M. Distinct timing in the activity of cannabinoid-sensitive and cannabinoid-insensitive basket cells. Nat Neurosci. 2006;9:807–15.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB. Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature. 1998;391:892–6.

Article  CAS  PubMed  Google Scholar 

Ohashi M, Hirano T, Watanabe K, Shoji H, Ohashi N, Baba H, et al. Hydrogen peroxide modulates neuronal excitability and membrane properties in ventral horn neurons of the rat spinal cord. Neuroscience. 2016;331:206–20.

Article  CAS  PubMed  Google Scholar 

Choy JMC, Agahari FA, Li L, Stricker C. Noradrenaline increases mEPSC frequency in pyramidal cells in layer II of rat barrel cortex via calcium release from presynaptic stores. Front Cell Neurosci. 2018;12:213.

Article  PubMed  PubMed Central  Google Scholar 

Wang J, Huang J, Li YQ, Yao S, Wu CH, Wang Y, et al. Neuregulin 1/ErbB4 signaling contributes to the anti-epileptic effects of the ketogenic diet. Cell Biosci. 2021;11:29.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qiu J, Stincic TL, Bosch MA, Connors AM, Kaech Petrie S, Ronnekleiv OK, et al. Deletion of Stim1 in hypothalamic arcuate nucleus kiss1 neurons potentiates synchronous GCaMP activity and protects against diet-induced obesity. J Neurosci. 2021;41:9688–701.

Article  CAS 

留言 (0)

沒有登入
gif