Structural basis of tolvaptan binding to the vasopressin V2 receptor

Lanktree MB, Haghighi A, Guiard E, Iliuta IA, Song X, Harris PC, et al. Prevalence estimates of polycystic kidney and liver disease by population sequencing. J Am Soc Nephrol. 2018;29:2593–600.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Willey CJ, Blais JD, Hall AK, Krasa HB, Makin AJ, Czerwiec FS. Prevalence of autosomal dominant polycystic kidney disease in the European Union. Nephrol Dial Transpl. 2017;32:1356–63.

Google Scholar 

Chapin HC, Caplan MJ. The cell biology of polycystic kidney disease. J Cell Biol. 2010;191:701–10.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bergmann C, Guay-Woodford LM, Harris PC, Horie S, Peters DJM, Torres VE. Polycystic kidney disease. Nat Rev Dis Prim. 2018;4:50.

Article  PubMed  Google Scholar 

Cornec-Le Gall E, Alam A, Perrone RD. Autosomal dominant polycystic kidney disease. Lancet. 2019;393:919–35.

Article  PubMed  Google Scholar 

Rinschen MM, Schermer B, Benzing T. Vasopressin-2 receptor signaling and autosomal dominant polycystic kidney disease: from bench to bedside and back again. J Am Soc Nephrol. 2014;25:1140–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wilson PD. Therapeutic targets for polycystic kidney disease. Expert Opin Ther Targets. 2016;20:35–45.

Article  CAS  PubMed  Google Scholar 

Fenton RA, Brond L, Nielsen S, Praetorius J. Cellular and subcellular distribution of the type-2 vasopressin receptor in the kidney. Am J Physiol Ren Physiol. 2007;293:F748–F760.

Article  CAS  Google Scholar 

Wang X, Wu Y, Ward CJ, Harris PC, Torres VE. Vasopressin directly regulates cyst growth in polycystic kidney disease. J Am Soc Nephrol. 2008;19:102–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Belibi FA, Reif G, Wallace DP, Yamaguchi T, Olsen L, Li H, et al. Cyclic AMP promotes growth and secretion in human polycystic kidney epithelial cells. Kidney Int. 2004;66:964–73.

Article  CAS  PubMed  Google Scholar 

Sun Y, Liu Z, Cao X, Lu Y, Mi Z, He C, et al. Activation of P-TEFb by cAMP-PKA signaling in autosomal dominant polycystic kidney disease. Sci Adv. 2019;5:eaaw3593.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Torres VE, Harris PC. Strategies targeting cAMP signaling in the treatment of polycystic kidney disease. J Am Soc Nephrol. 2014;25:18–32.

Article  CAS  PubMed  Google Scholar 

Torres VE, Chapman AB, Devuyst O, Gansevoort RT, Grantham JJ, Higashihara E, et al. Tolvaptan in patients with autosomal dominant polycystic kidney disease. N Engl J Med. 2012;367:2407–18.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Torres VE, Chapman AB, Devuyst O, Gansevoort RT, Perrone RD, Koch G, et al. Tolvaptan in later-stage autosomal dominant polycystic kidney disease. N Engl J Med. 2017;377:1930–42.

Article  CAS  PubMed  Google Scholar 

Wang X, Constans MM, Chebib FT, Torres VE, Pellegrini L. Effect of a vasopressin V2 receptor antagonist on polycystic kidney disease development in a rat model. Am J Nephrol. 2019;49:487–93.

Article  CAS  PubMed  Google Scholar 

Aihara M, Fujiki H, Mizuguchi H, Hattori K, Ohmoto K, Ishikawa M, et al. Tolvaptan delays the onset of end-stage renal disease in a polycystic kidney disease model by suppressing increases in kidney volume and renal injury. J Pharmacol Exp Ther. 2014;349:258–67.

Article  PubMed  Google Scholar 

Hammond S, Gibson A, Jaruthamsophon K, Roth S, Mosedale M, Naisbitt DJ. Shedding light on drug-induced liver injury: activation of T cells from drug naive human donors with tolvaptan and a hydroxybutyric acid metabolite. Toxicol Sci. 2021;179:95–107.

CAS  PubMed  Google Scholar 

Cao X, Wang P, Yuan H, Zhang H, He Y, Fu K, et al. Benzodiazepine derivatives as potent vasopressin V2 receptor antagonists for the treatment of autosomal dominant kidney disease. J Med Chem. 2022;65:9295–311.

Article  CAS  PubMed  Google Scholar 

Cao X, Wang P, Zhao W, Yuan H, Hu H, Chen T, et al. Structure-affinity and structure-kinetic relationship studies of benzodiazepine derivatives for the development of efficacious vasopressin V2 receptor antagonists. J Med Chem. 2023;66:3621–34.

Article  CAS  PubMed  Google Scholar 

Ogawa H, Yamashita H, Kondo K, Yamamura Y, Miyamoto H, Kan K, et al. Orally active, nonpeptide vasopressin V2 receptor antagonists: a novel series of 1-[4-(benzoylamino)benzoyl]-2,3,4,5-tetrahydro-1H-benzazepines and related compounds. J Med Chem. 1996;39:3547–55.

Dror RO, Pan AC, Arlow DH, Borhani DW, Maragakis P, Shan Y, et al. Pathway and mechanism of drug binding to G-protein-coupled receptors. Proc Natl Acad Sci USA. 2011;108:13118–23.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou F, Ye C, Ma X, Yin W, Croll TI, Zhou Q, et al. Molecular basis of ligand recognition and activation of human V2 vasopressin receptor. Cell Res. 2021;31:929–31.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang L, Xu J, Cao S, Sun D, Liu H, Lu Q, et al. Cryo-EM structure of the AVP-vasopressin receptor 2-Gs signaling complex. Cell Res. 2021;31:932–4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bous J, Orcel H, Floquet N, Leyrat C, Lai-Kee-Him J, Gaibelet G, et al. Cryo-electron microscopy structure of the antidiuretic hormone arginine-vasopressin V2 receptor signaling complex. Sci Adv. 2021;7:eabg5628.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bous J, Fouillen A, Orcel H, Trapani S, Cong X, Fontanel S, et al. Structure of the vasopressin hormone-V2 receptor-β-arrestin1 ternary complex. Sci Adv. 2022;8:eabo7761.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Juan A, Ballesteros HW. Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci. 1995;25:366–428.

Article  Google Scholar 

Song Y, DiMaio F, Wang RY, Kim D, Miles C, Brunette T, et al. High-resolution comparative modeling with RosettaCM. Structure. 2013;21:1735–42.

Article  CAS  PubMed  Google Scholar 

Jo S, Kim T, Iyer VG, Im W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem. 2008;29:1859–65.

Article  CAS  PubMed  Google Scholar 

Lee J, Hitzenberger M, Rieger M, Kern NR, Zacharias M, Im W. CHARMM-GUI supports the Amber force fields. J Chem Phys. 2020;153:035103.

Article  CAS  PubMed  Google Scholar 

Lee J, Cheng X, Swails JM, Yeom MS, Eastman PK, Lemkul JA, et al. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. J Chem Theory Comput. 2016;12:405–13.

Article  CAS  PubMed  Google Scholar 

Lomize MA, Pogozheva ID, Joo H, Mosberg HI, Lomize AL. OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res. 2012;40:D370–D376.

Article  CAS  PubMed  Google Scholar 

Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J

留言 (0)

沒有登入
gif